Algorithms & Models of Computation

CS/ECE 374, Fall 2020

23.3

NP-Completeness of Hamiltonian Cycle

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

23.3.1

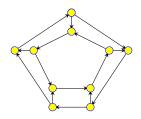
Reduction from 3SAT to Hamiltonian Cycle: Basic idea

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with n vertices

Goal Does **G** have a Hamiltonian cycle?

► A Hamiltonian cycle is a cycle in the graph that visits every vertex in **G** exactly once

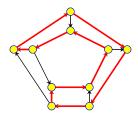


Directed Hamiltonian Cycle

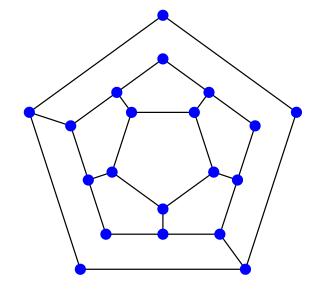
Input Given a directed graph G = (V, E) with n vertices

Goal Does **G** have a Hamiltonian cycle?

▶ A Hamiltonian cycle is a cycle in the graph that visits every vertex in
G exactly once



Is the following graph Hamiltonian?



- (A) Yes.
- **(B)** No.

Directed Hamiltonian Cycle is **NP-Complete**

- ▶ Directed Hamiltonian Cycle is in **NP**: exercise
- ► Hardness: We will show 3SAT \leq_P Directed Hamiltonian Cycle.

- 1. To show reduction, we next describe an algorithm:
 - Input: **3SAT** formula φ
 - ightharpoonup Output: A graph G_{φ} .
 - Running time is polynomial.
 - ightharpoonup Requirement: φ is satisfiable \iff G_{φ} is Hamiltonian.
- 2. Given **3SAT** formula φ create a graph G_{φ} such that
 - $ightharpoonup G_{\varphi}$ has a Hamiltonian cycle if and only if φ is satisfiable
 - $ightharpoonup G_{arphi}$ should be constructible from arphi by a polynomial time algorithm ${\mathcal A}$
- 3. Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

- 1. To show reduction, we next describe an algorithm:
 - ▶ Input: **3SAT** formula φ
 - ightharpoonup Output: A graph G_{φ} .
 - Running time is polynomial.
 - ightharpoonup Requirement: φ is satisfiable \iff G_{φ} is Hamiltonian.
- 2. Given **3SAT** formula φ create a graph G_{φ} such that
 - $ightharpoonup G_{\varphi}$ has a Hamiltonian cycle if and only if φ is satisfiable
 - $ightharpoonup G_{arphi}$ should be constructible from arphi by a polynomial time algorithm ${\mathcal A}$
- 3. Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

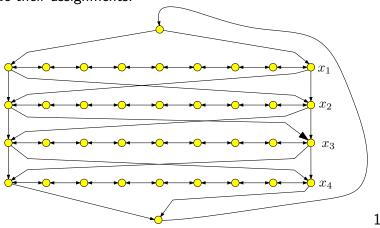
- 1. To show reduction, we next describe an algorithm:
 - Input: **3SAT** formula φ
 - ightharpoonup Output: A graph G_{φ} .
 - Running time is polynomial.
 - ightharpoonup Requirement: φ is satisfiable \iff G_{φ} is Hamiltonian.
- 2. Given **3SAT** formula φ create a graph G_{φ} such that
 - $ightharpoonup G_{arphi}$ has a Hamiltonian cycle if and only if arphi is satisfiable
 - $lackbox{m{G}}_{arphi}$ should be constructible from arphi by a polynomial time algorithm ${\mathcal A}$
- 3. Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

- 1. To show reduction, we next describe an algorithm:
 - Input: **3SAT** formula φ
 - ightharpoonup Output: A graph G_{φ} .
 - Running time is polynomial.
 - ightharpoonup Requirement: φ is satisfiable \iff G_{φ} is Hamiltonian.
- 2. Given **3SAT** formula φ create a graph G_{φ} such that
 - $ightharpoonup G_{\varphi}$ has a Hamiltonian cycle if and only if φ is satisfiable
 - $lackbox{m{\mathcal{G}}}_{arphi}$ should be constructible from arphi by a polynomial time algorithm ${\mathcal{A}}$
- 3. Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

- 1. To show reduction, we next describe an algorithm:
 - Input: **3SAT** formula φ
 - ightharpoonup Output: A graph G_{φ} .
 - Running time is polynomial.
 - ightharpoonup Requirement: φ is satisfiable \iff G_{φ} is Hamiltonian.
- 2. Given **3SAT** formula φ create a graph G_{φ} such that
 - $ightharpoonup G_{arphi}$ has a Hamiltonian cycle if and only if arphi is satisfiable
 - $ightharpoonup G_{\varphi}$ should be constructible from φ by a polynomial time algorithm ${\cal A}$
- 3. Notation: φ has n variables x_1, x_2, \ldots, x_n and m clauses C_1, C_2, \ldots, C_m .

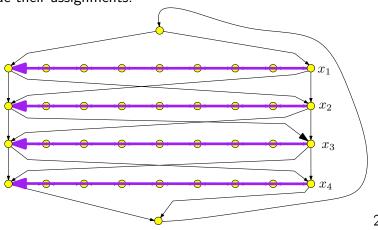
Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



Converting φ to a graph

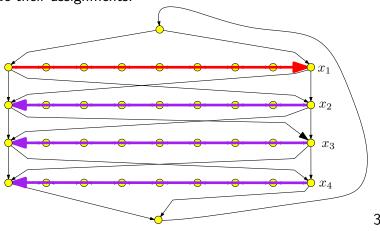
Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



$$x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0$$

Converting φ to a graph

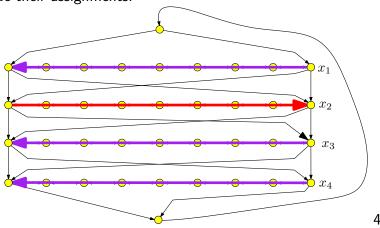
Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



$$x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 0$$

Converting φ to a graph

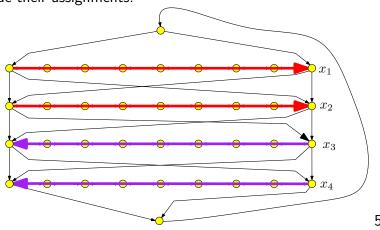
Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



$$x_1 = 0, x_2 = 1, x_3 = 0, x_4 = 0$$

Converting φ to a graph

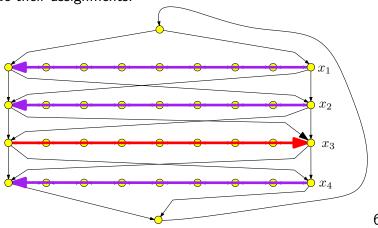
Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



$$x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 0$$

Converting φ to a graph

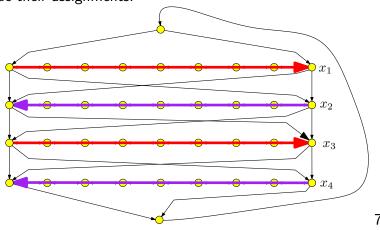
Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



$$x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 0$$

Converting φ to a graph

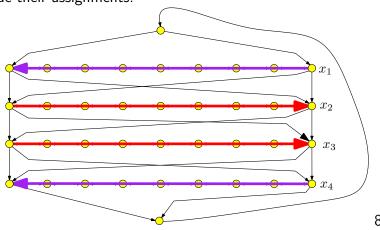
Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



$$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 0$$

Converting φ to a graph

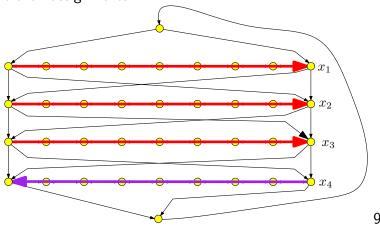
Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



$$x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 0$$

Converting φ to a graph

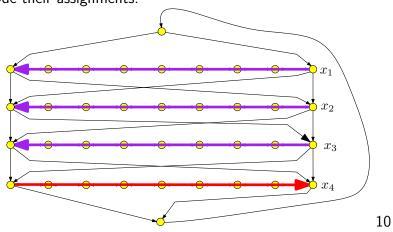
Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



$$x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 01$$

Converting φ to a graph

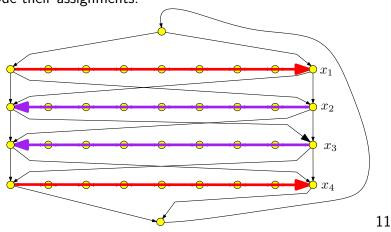
Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



$$x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1$$

Converting φ to a graph

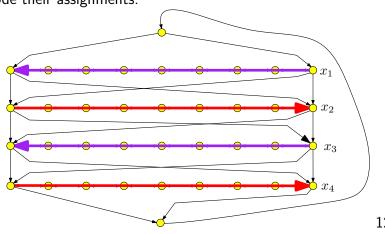
Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



$$x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 1$$

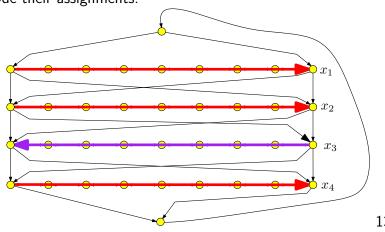
Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



Converting φ to a graph

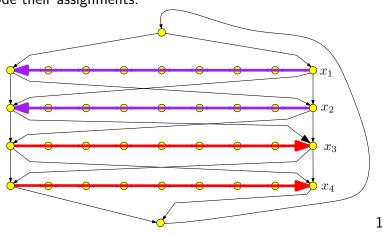
Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



$$x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 1$$

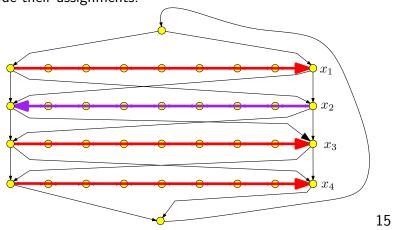
Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



Converting φ to a graph

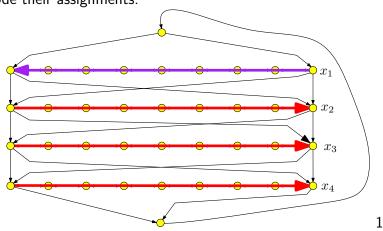
Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



$$x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 1$$

Converting φ to a graph

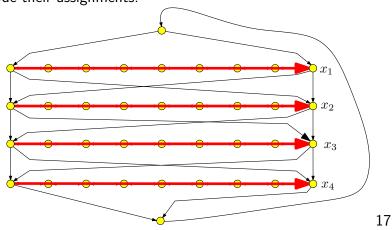
Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



$$x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 1$$

Converting φ to a graph

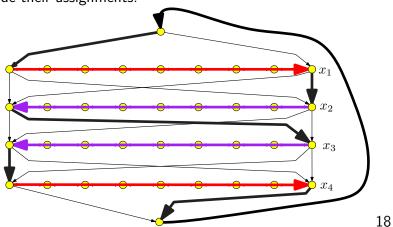
Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



$$x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 1$$

Converting φ to a graph

Given a formula with n variables, we need a graph with 2^n different Hamiltonian paths, that can encode their assignments.



THE END

. . .

(for now)