Algorithms & Models of Computation

CS/ECE 374, Fall 2020

22.2.3

Examples to problems with efficient certifiers

Example: Vertex Cover

1 Problem: Does **G** have a vertex cover of size $\leq k$?

• Certificate: $S \subseteq V$.

Q Certifier: Check $|S| \leq k$ and that for every edge at least one endpoint is in S.

Example: **SAT**

- **1** Problem: Does formula φ have a satisfying truth assignment?
 - Certificate: Assignment a of 0/1 values to each variable.
 - **2** Certifier: Check each clause under **a** and say "yes" if all clauses are true.

Example: Composites

Problem: Composite

Instance: A number *s*.

Question: Is the number **s** a composite?

Problem: Composite.

① Certificate: A factor $t \leq s$ such that $t \neq 1$ and $t \neq s$.

Certifier: Check that t divides s.

Example: NFA Universality

Problem: NFA Universality

Instance: Description of a NFA *M*.

Question: Is $L(M) = \Sigma^*$, that is, does M accept all strings?

Problem: NFA Universality.

Certificate: A DFA M' equivalent to M

2 Certifier: Check that $L(M') = \Sigma^*$

Certifier is efficient but certificate is not necessarily short! We do not know if the problem is in **NP**.

Example: NFA Universality

Problem: NFA Universality

Instance: Description of a NFA *M*.

Question: Is $L(M) = \Sigma^*$, that is, does M accept all strings?

Problem: NFA Universality.

Certificate: A DFA M' equivalent to M

2 Certifier: Check that $L(M') = \Sigma^*$

Certifier is efficient but certificate is not necessarily short! We do not know if the problem is in **NP**.

Example: A String Problem

Problem: PCP

```
Instance: Two sets of binary strings \alpha_1, \ldots, \alpha_n and \beta_1, \ldots, \beta_n Question: Are there indices i_1, i_2, \ldots, i_k such that \alpha_{i_1} \alpha_{i_2} \ldots \alpha_{i_k} = \beta_{i_1} \beta_{i_2} \ldots \beta_{i_k}
```

- Problem: PCP
 - Certificate: A sequence of indices i_1, i_2, \ldots, i_k
 - **Q** Certifier: Check that $\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k}=\beta_{i_1}\beta_{i_2}\ldots\beta_{i_k}$

PCP = Posts Correspondence Problem and it is undecidable! Implies no finite bound on length of certificate!

Example: A String Problem

Problem: PCP

Instance: Two sets of binary strings $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n Question: Are there indices i_1, i_2, \ldots, i_k such that $\alpha_{i_1} \alpha_{i_2} \ldots \alpha_{i_k} = \beta_{i_1} \beta_{i_2} \ldots \beta_{i_k}$

- Problem: PCP
 - Certificate: A sequence of indices i_1, i_2, \ldots, i_k
 - $oldsymbol{\circ}$ Certifier: Check that $lpha_{i_1}lpha_{i_2}\ldotslpha_{i_k}=eta_{i_1}eta_{i_2}\ldotseta_{i_k}$

PCP = Posts Correspondence Problem and it is undecidable! Implies no finite bound on length of certificate!

THE END

...

(for now)