Algorithms & Models of Computation
CS/ECE 374, Fall 2020

21.6.2
Reducing SAT to 3SAT

65 /80

SAT <p 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1,2, 3, ... variables:

(—lx\/—|y\/—|szVu>/\ —X

In 3SAT every clause must have exactly 3 different literals.

66 /80

SAT <p 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1,2, 3, ... variables:

(x\/sz\/w\/u)/\(—nx\/—|y\/—|szVu>/\<—|x)

In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we must make all clauses
to have exactly 3 variables...

Basic idea
© Pad short clauses so they have 3 literals.
© Break long clauses into shorter clauses.
© Repeat the above till we have a 3CNF.

66 /80

3SAT <p SAT

Q 3SAT <, SAT.

@ Because...
A 3SAT instance is also an instance of SAT.

67/80

SAT <p 3SAT

Claim 21.3. J

SAT <, 3SAT,
V

68 /80

SAT <p 3SAT

Claim 21.3.
SAT <, 3SAT. J

Given@a SAT formula we create a 3SAT formulh that
Q ¢ is satisfiabl ’_is satisfiable. /
@ ¢’ can be constructed from ¢ in time polynomial in |¢p|.

68 /80

SAT <p 3SAT

Claim 21.3.
SAT <p 3SAT. J

Given ¢ a SAT formula we create a 3SAT formula ¢’ such that
Q is satisfiable <= ¢’ is satisfiable.

@ ¢’ can be constructed from ¢ in time polynomial in |¢p|.

Idea: if a clause of ¢ is not of length 3, replace it with several clauses of length exactly

3.

68 /80

SAT <p 3SAT

A clause with two literals

Reduction ldeas: clause with 2 literals
@ Case clause with 2 literals: Let ¢ = €1 V €>. Let u be a new variable. Consider

¢ = (elve@ A (elvez@.
-y

@ Suppose ¢ =Y A c. Then ¢’ = 1 A ' is satisfiable <— is satisfiable.
ppose ¢ @ @

69 /80

SAT <p 3SAT

A clause with a single literal

Reduction ldeas: clause with 1 literal

© Case clause with one literal: Let ¢ be a clause with a single literal (i.e., ¢ = £).
Let u, v be new variables. Consider

c = (E\/u\/v)/\(ﬁ

/\(Kv—w\/v)/\ ﬂuv—w).

@ Suppose ¢ = A c. Then ¢’ = 1 A ¢’ is satisfiable <= ¢ is satisfiable.
@ % %

70/80

SAT <p 3SAT

A clause with more than 3 literals

Reduction ldeas: clause with more than 3 literals

@ Case clause with five literals: Let € = €1 V €5 V €3V €4 V Lx. Let u be a new
variable. Consider

/

c (K]sz\/gg,\/u /\(£4\/£5\/—|u).

@ Suppose ¢ = A c. Then ¢’ = 1p A ¢’ is satisfiable <= ¢ is satisfiable.

71/80

SAT <p 3SAT

A clause with more than 3 literals

Reduction Ideas: clause with more

@ Case clause with k > 3 literals: Léet ¢ = €1V €y V ...V £,/ Let u be a new
variable. Consider N

o (e

@ Suppose ¢ = A c. Then ¢’ = 1p A ¢’ is satisfiable <= ¢ is satisfiable.

72/80

Breaking a clause

Lemma 21.4.

For any boolean formulas X and Y and z a new boolean variable. Then
X V'Y s satisfiable
if and only if, z can be assigned a value such that

(X @/\ (Y \% —|z> is satisfiable

(with the same assignment to the variables appearing in X and Y).

73/80

SAT <p 3SAT (contd)

Clauses with mo 3 literals

ui_3 be new variables. Consider

et wy, ...

(fl V by V u1> AN <£3 VvV —w VvV UQ)

VAN (£4V—IU2\/U3> AN

N <£k—2 V —uUg_4 V Uk_3) AN <£k—1 Vv Ek Vv —Uk_3

-

Cgim 21.5. ya
@ = 1 A c is satisfiable <:>(\: Y N c’ is satisfiable.

Another way to see it — reduce size of clause by one:

c = (21 V...V oV uk_3> A (ek_l VLV —|uk_3) .

74/80

An Example
Example 21.6.

P = u AN (x1V—|X2V—|x3)

AN —|x2V—|X3VX4VX1) AN (xl).

Equivalent form:

75/80

An Example
Example 21.6.

Equivalent form:

75/80

An Example
Example 21.6.

A[x3V-xV —|X3)
AN (Xl) .

V —xg V —IZ)

Equivalent form:

Y=(x1VxgVz)A(—

N (x1V xo V ﬂX:)
(mx2 V —x3 V y1) f((x4 \Y @

75/80

An Example
Example 21.6.

P = (—|x1 \Y —|x4> AN (xl V —xp V —ix3
AN (—lxz V x3V x3 V xl) AN (xl)

Equivalent form;

Y =(x1VoxgVz)A (—xV-xgV z)
A (x1V —xa V —ix3)
A (=X, V —x3 V

P14

75/80

Overall Reduction Algorithm
Reduction from SAT to 3SAT

ReduceSATTo3SAT () :
// @: CNF formula.
for each clause ¢ of ¢ do
if ¢ does not have exactly 3 literals then
construct ¢’ as before
else
c=c
1 is conjunction of all ¢’ constructed in loop
return Solver3SAT(%))

Correctness (informal)

 is satisfiable <> 1) is satisfiable because for each clause c, the new 3CNF
formula ¢’ is logically equivalent to c.

76 /80

THE END

(for now)

