Algorithms & Models of Computation

CS/ECE 374, Fall 2020

21.6

The Satisfiability Problem (SAT)

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

21.6.1 CNF, SAT, 3CNF and 3SAT

Propositional Formulas

Definition 21.1.

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- **1** A **literal** is either a boolean variable x_i or its negation $\neg x_i$.
- ② A <u>clause</u> is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.
- A <u>formula in conjunctive normal form</u> (CNF) is propositional formula which is a conjunction of clauses
- A formula φ is a 3CNF:
 - ① $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_1)$ is a 3CNF formula, but $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is not.

Propositional Formulas

Definition 21.1.

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- **1** A **literal** is either a boolean variable x_i or its negation $\neg x_i$.
- ② A <u>clause</u> is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.
- 3 A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses
- A formula φ is a 3CNF:

A CNF formula such that every clause has **exactly** 3 literals.

① $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_1)$ is a 3CNF formula, but $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is not.

Every boolean formula $f: \{0,1\}^n \to \{0,1\}$ can be written as a CNF formula.

x_1	X 2	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	$f(x_1, x_2, \ldots, x_6)$
0	0	0	0	0	0	$f(0,\ldots,0,0)$
0	0	0	0	0	1	$f(0,\ldots,0,1)$
1	0	1	0	0	1	?
1	0	1	0	1	0	0
1	0	1	0	1	1	?
1	1	1	1	1	1	$f(1,\ldots,1)$

Every boolean formula $f: \{0,1\}^n \to \{0,1\}$ can be written as a CNF formula.

<i>x</i> ₁	x ₂	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	$f(x_1,x_2,\ldots,x_6)$
0	0	0	0	0	0	$f(0,\ldots,0,0)$
0	0	0	0	0	1	$f(0,\ldots,0,1)$
:	:	:	:	:	:	:
1	0	1	0	0	1	?
1	0	1	0	1	0	0
1	0	1	0	1	1	?
:	:	:	:	:	:	:
1	1	1	1	1	1	$f(1,\ldots,1)$

Every boolean formula $f: \{0,1\}^n \to \{0,1\}$ can be written as a CNF formula.

<i>x</i> ₁	x ₂	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	$f(x_1,x_2,\ldots,x_6)$	$\overline{x_1} \lor x_2 \overline{x_3} \lor x_4 \lor \overline{x_5} \lor x_6$
0	0	0	0	0	0	$f(0,\ldots,0,0)$	1
0	0	0	0	0	1	$f(0,\ldots,0,1)$	1
1	:	:	:	:	:	:	:
1	0	1	0	0	1	?	1
1	0	1	0	1	0	0	0
1	0	1	0	1	1	?	1
:	:	:	:	:	:	:	
1	1	1	1	1	1	$f(1,\ldots,1)$	1

Every boolean formula $f: \{0,1\}^n \to \{0,1\}$ can be written as a CNF formula.

<i>x</i> ₁	x ₂	x ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	$f(x_1,x_2,\ldots,x_6)$	$\overline{x_1} \lor x_2\overline{x_3} \lor x_4 \lor \overline{x_5} \lor x_6$
0	0	0	0	0	0	$f(0,\ldots,0,0)$	1
0	0	0	0	0	1	$f(0,\ldots,0,1)$	1
1	:	:	:	:	:	:	:
1	0	1	0	0	1	?	1
1	0	1	0	1	0	0	0
1	0	1	0	1	1	?	1
1	:	:	:	:	:	:	
1	1	1	1	1	1	$f(1,\ldots,1)$	1

For every row that f is zero compute corresponding CNF clause.

Every boolean formula $f: \{0,1\}^n \to \{0,1\}$ can be written as a CNF formula.

x ₁	x ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	$f(x_1,x_2,\ldots,x_6)$	$\overline{x_1} \lor x_2\overline{x_3} \lor x_4 \lor \overline{x_5} \lor x_6$
0	0	0	0	0	0	$f(0,\ldots,0,0)$	1
0	0	0	0	0	1	$f(0,\ldots,0,1)$	1
1 :	:	:	:	:	:	i i	:
1	0	1	0	0	1	?	1
1	0	1	0	1	0	0	0
1	0	1	0	1	1	?	1
1 :	:	:	:	:	:	:	
1	1	1	1	1	1	$f(1,\ldots,1)$	1

For every row that f is zero compute corresponding CNF clause. Take the and (\land) of all the CNF clauses computed

Every boolean formula $f: \{0,1\}^n \to \{0,1\}$ can be written as a CNF formula.

x ₁	x ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	$f(x_1,x_2,\ldots,x_6)$	$\overline{x_1} \lor x_2\overline{x_3} \lor x_4 \lor \overline{x_5} \lor x_6$
0	0	0	0	0	0	$f(0,\ldots,0,0)$	1
0	0	0	0	0	1	$f(0,\ldots,0,1)$	1
1 :	:	:	:	:	:	i i	:
1	0	1	0	0	1	?	1
1	0	1	0	1	0	0	0
1	0	1	0	1	1	?	1
1 :	:	:	:	:	:	:	
1	1	1	1	1	1	$f(1,\ldots,1)$	1

For every row that f is zero compute corresponding CNF clause. Take the and (\land) of all the CNF clauses computed

Resulting CNF formula equivalent to f.

Satisfiability

Problem: SAT

Instance: A CNF formula φ .

Question: Is there a truth assignment to the variable of arphi such that

 φ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula φ .

Question: Is there a truth assignment to the variable of φ such that

 φ evaluates to true?

Satisfiability

SAT

Given a CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

Example 21.2.

- $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is satisfiable; take $x_1, x_2, \dots x_5$ to be all true
- $(x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2) \wedge (\neg x_1 \vee \neg x_2) \wedge (x_1 \vee x_2)$ is not satisfiable.

3SAT

Given a 3CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

(More on **2SAT** in a bit...)

Importance of SAT and 3SAT

- **SAT** and **3SAT** are basic constraint satisfaction problems.
- Many different problems can reduced to them because of the simple yet powerful expressively of logical constraints.
- Arise naturally in many applications involving hardware and software verification and correctness.
- As we will see, it is a fundamental problem in theory of NP-Completeness.

$z = \overline{x}$

Given two bits x, z which of the following **SAT** formulas is equivalent to the formula $z = \overline{x}$:

- (A) $(\overline{z} \vee x) \wedge (z \vee \overline{x})$.
- (B) $(z \lor x) \land (\overline{z} \lor \overline{x})$.
- (C) $(\overline{z} \lor x) \land (\overline{z} \lor \overline{x}) \land (\overline{z} \lor \overline{x})$.
- (D) $z \oplus x$.
- (E) $(z \lor x) \land (\overline{z} \lor \overline{x}) \land (z \lor \overline{x}) \land (\overline{z} \lor x)$.

$z = x \wedge y$

Given three bits x, y, z which of the following **SAT** formulas is equivalent to the formula $z = x \wedge y$:

- (A) $(\overline{z} \lor x \lor y) \land (z \lor \overline{x} \lor \overline{y})$.
- (B) $(\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (C) $(\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (D) $(z \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (E) $(z \lor x \lor y) \land (z \lor x \lor \overline{y}) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}) \land (\overline{z} \lor x \lor y) \land (\overline{z} \lor x \lor y) \land (\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor \overline{y}).$

$z = x \vee y$

Given three bits x, y, z which of the following **SAT** formulas is equivalent to the formula $z = x \lor y$:

- (A) $(\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y})$.
- $(\mathsf{B}) \ (\overline{z} \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- (C) $(z \lor x \lor y) \land (\overline{z} \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor y) \land (z \lor \overline{x} \lor \overline{y}).$
- $\begin{array}{l} (\square) \ \ (z \vee x \vee y) \wedge (z \vee x \vee \overline{y}) \wedge (z \vee \overline{x} \vee y) \wedge (z \vee \overline{x} \vee \overline{y}) \wedge (\overline{z} \vee x \vee y) \wedge \\ (\overline{z} \vee x \vee \overline{y}) \wedge (\overline{z} \vee \overline{x} \vee y) \wedge (\overline{z} \vee \overline{x} \vee \overline{y}). \end{array}$
- $(\mathsf{E}) \ (\overline{z} \lor x \lor y) \land (z \lor \overline{x} \lor y) \land (z \lor x \lor \overline{y}) \land (z \lor \overline{x} \lor \overline{y}).$

THE END

..

(for now)