Algorithms & Models of Computation

CS/ECE 374, Fall 2020

21.5

Independent Set and Vertex Cover

Given a graph G = (V, E), a set of vertices S is:

Given a graph G = (V, E), a set of vertices S is:

Given a graph G = (V, E), a set of vertices S is:

Given a graph G = (V, E), a set of vertices S is:

Given a graph G = (V, E), a set of vertices S is:

The Vertex Cover Problem

Problem 21.1 (Vertex Cover).

Input: A graph G and integer **k**.

Goal: Is there a vertex cover of size $\leq k$ in G?

Can we relate **Independent Set** and **Vertex Cover**?

The Vertex Cover Problem

Problem 21.1 (Vertex Cover).

Input: A graph G and integer **k**.

Goal: Is there a vertex cover of size $\leq k$ in G?

Can we relate Independent Set and Vertex Cover?

Relationship between...

Vertex Cover and Independent Set

Proposition 21.2.

Let G = (V, E) be a graph. S is an Independent Set $\iff V \setminus S$ is a vertex cover.

Proof

- (\Rightarrow) Let **S** be an independent set
 - **1** Consider any edge $uv \in E$.
 - 2 Since **S** is an independent set, either $u \not\in S$ or $v \not\in S$.
 - **3** Thus, either $u \in V \setminus S$ or $v \in V \setminus S$.
- (\Leftarrow) Let $V \setminus S$ be some vertex cover:
 - Consider $u, v \in S$
 - ② uv is not an edge of G, as otherwise $V \setminus S$ does not cover uv.
 - \bigcirc \Longrightarrow **S** is thus an independent set.

Relationship between...

Vertex Cover and Independent Set

Proposition 21.2.

Let G = (V, E) be a graph. S is an Independent Set $\iff V \setminus S$ is a vertex cover.

Proof.

- (\Rightarrow) Let **S** be an independent set
 - Consider any edge $uv \in E$.
 - 2 Since **S** is an independent set, either $u \not\in S$ or $v \not\in S$.
 - **3** Thus, either $u \in V \setminus S$ or $v \in V \setminus S$.
 - $V \setminus S$ is a vertex cover.
- (\Leftarrow) Let $V \setminus S$ be some vertex cover:
 - Consider $u, v \in S$
 - 2 uv is not an edge of G, as otherwise $V \setminus S$ does not cover uv.

Relationship between...

Vertex Cover and Independent Set

Proposition 21.2.

Let G = (V, E) be a graph. S is an Independent Set $\iff V \setminus S$ is a vertex cover.

Proof.

- (\Rightarrow) Let **S** be an independent set
 - Consider any edge $uv \in E$.
 - 2 Since **S** is an independent set, either $u \not\in S$ or $v \not\in S$.
 - **3** Thus, either $u \in V \setminus S$ or $v \in V \setminus S$.
 - $V \setminus S$ is a vertex cover.
- (\Leftarrow) Let $V \setminus S$ be some vertex cover:
 - Consider $u, v \in S$
 - 2 uv is not an edge of G, as otherwise $V \setminus S$ does not cover uv.
 - $3 \implies S$ is thus an independent set.

- G: graph with n vertices, and an integer k be an instance of the Independent Set problem.
- ② G has an independent set of size $\geq k \iff G$ has a vertex cover of size $\leq n-k$
- **1** (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- **1** Therefore, Independent Set \leq_P Vertex Cover. Also Vertex Cover \leq_P Independent Set.

- G: graph with n vertices, and an integer k be an instance of the Independent Set problem.
- **Q** G has an independent set of size $\geq k \iff G$ has a vertex cover of size $\leq n-k$
- **3** (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- **1** Therefore, Independent Set \leq_P Vertex Cover. Also Vertex Cover \leq_P Independent Set.

- G: graph with n vertices, and an integer k be an instance of the Independent Set problem.
- **2 G** has an independent set of size $\geq k \iff G$ has a vertex cover of size $\leq n-k$
- **3** (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- **1** Therefore, Independent Set \leq_P Vertex Cover. Also Vertex Cover \leq_P Independent Set.

Set problem.

1 G: graph with n vertices, and an integer k be an instance of the Independent

- **Q** G has an independent set of size $\geq k \iff G$ has a vertex cover of size $\leq n-k$
- **3** (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- **1** Therefore, Independent Set \leq_P Vertex Cover. Also Vertex Cover \leq_P Independent Set.

Proving Correctness of Reductions

To prove that $X \leq_P Y$ you need to give an algorithm A that:

- **1** Transforms an instance I_X of X into an instance I_Y of Y.
- ② Satisfies the property that answer to I_X is YES $\iff I_Y$ is YES.
 - 1 typical easy direction to prove: answer to I_Y is YES if answer to I_X is YES
 - 2 typical difficult direction to prove: answer to I_X is YES if answer to I_Y is YES (equivalently answer to I_X is NO if answer to I_Y is NO).
- 3 Runs in **polynomial** time.

THE END

. . .

(for now)