
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

21.4.2
Polynomial-time reductions and hardness
FLNAME:21.4.2.0 ZZZ:21.4.2.0 Polynomial-time reductions and hardness

35 / 80

Polynomial-time reductions and hardness
1 For decision problems X and Y , if X ≤P Y , and Y has an efficient algorithm, X

has an efficient algorithm.
2 If you believe that Independent Set does NOT have an efficient algorithm...
3 Showed: Independent Set ≤P Clique
4 =⇒ Clique should not be solvable in polynomial time.
5 If Clique had an efficient algorithm, so would Independent Set!

Proposition 21.2.
If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm.

36 / 80

Polynomial-time reductions and hardness
1 For decision problems X and Y , if X ≤P Y , and Y has an efficient algorithm, X

has an efficient algorithm.
2 If you believe that Independent Set does NOT have an efficient algorithm...
3 Showed: Independent Set ≤P Clique
4 =⇒ Clique should not be solvable in polynomial time.
5 If Clique had an efficient algorithm, so would Independent Set!

Proposition 21.2.
If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm.

36 / 80

Polynomial-time reductions and hardness
1 For decision problems X and Y , if X ≤P Y , and Y has an efficient algorithm, X

has an efficient algorithm.
2 If you believe that Independent Set does NOT have an efficient algorithm...
3 Showed: Independent Set ≤P Clique
4 =⇒ Clique should not be solvable in polynomial time.
5 If Clique had an efficient algorithm, so would Independent Set!

Proposition 21.2.
If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm.

36 / 80

Polynomial-time reductions and hardness
1 For decision problems X and Y , if X ≤P Y , and Y has an efficient algorithm, X

has an efficient algorithm.
2 If you believe that Independent Set does NOT have an efficient algorithm...
3 Showed: Independent Set ≤P Clique
4 =⇒ Clique should not be solvable in polynomial time.
5 If Clique had an efficient algorithm, so would Independent Set!

Proposition 21.2.
If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm.

36 / 80

Polynomial-time reductions and hardness
1 For decision problems X and Y , if X ≤P Y , and Y has an efficient algorithm, X

has an efficient algorithm.
2 If you believe that Independent Set does NOT have an efficient algorithm...
3 Showed: Independent Set ≤P Clique
4 =⇒ Clique should not be solvable in polynomial time.
5 If Clique had an efficient algorithm, so would Independent Set!

Proposition 21.2.
If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm.

36 / 80

Polynomial-time reductions and hardness
1 For decision problems X and Y , if X ≤P Y , and Y has an efficient algorithm, X

has an efficient algorithm.
2 If you believe that Independent Set does NOT have an efficient algorithm...
3 Showed: Independent Set ≤P Clique
4 =⇒ Clique should not be solvable in polynomial time.
5 If Clique had an efficient algorithm, so would Independent Set!

Proposition 21.2.
If X ≤P Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm.

36 / 80

Polynomial-time reductions and instance sizes
Proposition 21.3.
Let R be a polynomial-time reduction from X to Y . Then for any instance IX of X ,
the size of the instance IY of Y produced from IX by R is polynomial in the size of IX .

Proof.
R is a polynomial-time algorithm and hence on input IX of size |IX | it runs in time
p(|IX |) for some polynomial p().
IY is the output of R on input IX .
R can write at most p(|IX |) bits and hence |IY | ≤ p(|IX |).

Note: Converse is not true. A reduction need not be polynomial-time even if output of
reduction is of size polynomial in its input.

37 / 80

Polynomial-time reductions and instance sizes
Proposition 21.3.
Let R be a polynomial-time reduction from X to Y . Then for any instance IX of X ,
the size of the instance IY of Y produced from IX by R is polynomial in the size of IX .

Proof.
R is a polynomial-time algorithm and hence on input IX of size |IX | it runs in time
p(|IX |) for some polynomial p().
IY is the output of R on input IX .
R can write at most p(|IX |) bits and hence |IY | ≤ p(|IX |).

Note: Converse is not true. A reduction need not be polynomial-time even if output of
reduction is of size polynomial in its input.

37 / 80

Polynomial-time reductions and instance sizes
Proposition 21.3.
Let R be a polynomial-time reduction from X to Y . Then for any instance IX of X ,
the size of the instance IY of Y produced from IX by R is polynomial in the size of IX .

Proof.
R is a polynomial-time algorithm and hence on input IX of size |IX | it runs in time
p(|IX |) for some polynomial p().
IY is the output of R on input IX .
R can write at most p(|IX |) bits and hence |IY | ≤ p(|IX |).

Note: Converse is not true. A reduction need not be polynomial-time even if output of
reduction is of size polynomial in its input.

37 / 80

Polynomial-time Reduction
Definition 21.4.
A polynomial time reduction from a decision problem X to a decision problem Y is an
algorithm A that has the following properties:

1 Given an instance IX of X , A produces an instance IY of Y .
2 A runs in time polynomial in |IX |. This implies that |IY | (size of IY) is polynomial

in |IX |.
3 Answer to IX YES ⇐⇒ answer to IY is YES.

Proposition 21.5.
If X ≤P Y then a polynomial time algorithm for Y implies a polynomial time algorithm
for X .

38 / 80

Polynomial-time Reduction
Definition 21.4.
A polynomial time reduction from a decision problem X to a decision problem Y is an
algorithm A that has the following properties:

1 Given an instance IX of X , A produces an instance IY of Y .
2 A runs in time polynomial in |IX |. This implies that |IY | (size of IY) is polynomial

in |IX |.
3 Answer to IX YES ⇐⇒ answer to IY is YES.

Proposition 21.5.
If X ≤P Y then a polynomial time algorithm for Y implies a polynomial time algorithm
for X .

38 / 80

Transitivity of Reductions
Proposition 21.6.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Proof.
1 RX→Y : Polynomial reduction that works in polynomial time f (x).
2 w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY .
3 RY→Z : Polynomial reduction that works in polynomial time g(x).
4 w ′ ∈ LY ⇐⇒ w ′′ = RY→Z(w ′) ∈ LZ .
5 w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY ⇐⇒ w ′′ = RY→Z(RX→Y (w)) ∈ LZ .
6 w ∈ LX ⇐⇒ RY→Z(RX→Y (w)) ∈ LZ .
7 R′(x) = RY→Z(RX→Y (x)) is a reduction from X to Z .
8 Running time of R′(x) is h(x) = g(f (x)), which is a polynomial.

39 / 80

Transitivity of Reductions
Proposition 21.6.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Proof.
1 RX→Y : Polynomial reduction that works in polynomial time f (x).
2 w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY .
3 RY→Z : Polynomial reduction that works in polynomial time g(x).
4 w ′ ∈ LY ⇐⇒ w ′′ = RY→Z(w ′) ∈ LZ .
5 w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY ⇐⇒ w ′′ = RY→Z(RX→Y (w)) ∈ LZ .
6 w ∈ LX ⇐⇒ RY→Z(RX→Y (w)) ∈ LZ .
7 R′(x) = RY→Z(RX→Y (x)) is a reduction from X to Z .
8 Running time of R′(x) is h(x) = g(f (x)), which is a polynomial.

39 / 80

Transitivity of Reductions
Proposition 21.6.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Proof.
1 RX→Y : Polynomial reduction that works in polynomial time f (x).
2 w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY .
3 RY→Z : Polynomial reduction that works in polynomial time g(x).
4 w ′ ∈ LY ⇐⇒ w ′′ = RY→Z(w ′) ∈ LZ .
5 w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY ⇐⇒ w ′′ = RY→Z(RX→Y (w)) ∈ LZ .
6 w ∈ LX ⇐⇒ RY→Z(RX→Y (w)) ∈ LZ .
7 R′(x) = RY→Z(RX→Y (x)) is a reduction from X to Z .
8 Running time of R′(x) is h(x) = g(f (x)), which is a polynomial.

39 / 80

Transitivity of Reductions
Proposition 21.6.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Proof.
1 RX→Y : Polynomial reduction that works in polynomial time f (x).
2 w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY .
3 RY→Z : Polynomial reduction that works in polynomial time g(x).
4 w ′ ∈ LY ⇐⇒ w ′′ = RY→Z(w ′) ∈ LZ .
5 w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY ⇐⇒ w ′′ = RY→Z(RX→Y (w)) ∈ LZ .
6 w ∈ LX ⇐⇒ RY→Z(RX→Y (w)) ∈ LZ .
7 R′(x) = RY→Z(RX→Y (x)) is a reduction from X to Z .
8 Running time of R′(x) is h(x) = g(f (x)), which is a polynomial.

39 / 80

Transitivity of Reductions
Proposition 21.6.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Proof.
1 RX→Y : Polynomial reduction that works in polynomial time f (x).
2 w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY .
3 RY→Z : Polynomial reduction that works in polynomial time g(x).
4 w ′ ∈ LY ⇐⇒ w ′′ = RY→Z(w ′) ∈ LZ .
5 w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY ⇐⇒ w ′′ = RY→Z(RX→Y (w)) ∈ LZ .
6 w ∈ LX ⇐⇒ RY→Z(RX→Y (w)) ∈ LZ .
7 R′(x) = RY→Z(RX→Y (x)) is a reduction from X to Z .
8 Running time of R′(x) is h(x) = g(f (x)), which is a polynomial.

39 / 80

Transitivity of Reductions
Proposition 21.6.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Proof.
1 RX→Y : Polynomial reduction that works in polynomial time f (x).
2 w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY .
3 RY→Z : Polynomial reduction that works in polynomial time g(x).
4 w ′ ∈ LY ⇐⇒ w ′′ = RY→Z(w ′) ∈ LZ .
5 w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY ⇐⇒ w ′′ = RY→Z(RX→Y (w)) ∈ LZ .
6 w ∈ LX ⇐⇒ RY→Z(RX→Y (w)) ∈ LZ .
7 R′(x) = RY→Z(RX→Y (x)) is a reduction from X to Z .
8 Running time of R′(x) is h(x) = g(f (x)), which is a polynomial.

39 / 80

Transitivity of Reductions
Proposition 21.6.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Proof.
1 RX→Y : Polynomial reduction that works in polynomial time f (x).
2 w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY .
3 RY→Z : Polynomial reduction that works in polynomial time g(x).
4 w ′ ∈ LY ⇐⇒ w ′′ = RY→Z(w ′) ∈ LZ .
5 w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY ⇐⇒ w ′′ = RY→Z(RX→Y (w)) ∈ LZ .
6 w ∈ LX ⇐⇒ RY→Z(RX→Y (w)) ∈ LZ .
7 R′(x) = RY→Z(RX→Y (x)) is a reduction from X to Z .
8 Running time of R′(x) is h(x) = g(f (x)), which is a polynomial.

39 / 80

Transitivity of Reductions
Proposition 21.6.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Proof.
1 RX→Y : Polynomial reduction that works in polynomial time f (x).
2 w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY .
3 RY→Z : Polynomial reduction that works in polynomial time g(x).
4 w ′ ∈ LY ⇐⇒ w ′′ = RY→Z(w ′) ∈ LZ .
5 w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY ⇐⇒ w ′′ = RY→Z(RX→Y (w)) ∈ LZ .
6 w ∈ LX ⇐⇒ RY→Z(RX→Y (w)) ∈ LZ .
7 R′(x) = RY→Z(RX→Y (x)) is a reduction from X to Z .
8 Running time of R′(x) is h(x) = g(f (x)), which is a polynomial.

39 / 80

Transitivity of Reductions
Proposition 21.6.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Proof.
1 RX→Y : Polynomial reduction that works in polynomial time f (x).
2 w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY .
3 RY→Z : Polynomial reduction that works in polynomial time g(x).
4 w ′ ∈ LY ⇐⇒ w ′′ = RY→Z(w ′) ∈ LZ .
5 w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY ⇐⇒ w ′′ = RY→Z(RX→Y (w)) ∈ LZ .
6 w ∈ LX ⇐⇒ RY→Z(RX→Y (w)) ∈ LZ .
7 R′(x) = RY→Z(RX→Y (x)) is a reduction from X to Z .
8 Running time of R′(x) is h(x) = g(f (x)), which is a polynomial.

39 / 80

Transitivity of Reductions
Proposition 21.6.
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Proof.
1 RX→Y : Polynomial reduction that works in polynomial time f (x).
2 w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY .
3 RY→Z : Polynomial reduction that works in polynomial time g(x).
4 w ′ ∈ LY ⇐⇒ w ′′ = RY→Z(w ′) ∈ LZ .
5 w ∈ LX ⇐⇒ w ′ = RX→Y (w) ∈ LY ⇐⇒ w ′′ = RY→Z(RX→Y (w)) ∈ LZ .
6 w ∈ LX ⇐⇒ RY→Z(RX→Y (w)) ∈ LZ .
7 R′(x) = RY→Z(RX→Y (x)) is a reduction from X to Z .
8 Running time of R′(x) is h(x) = g(f (x)), which is a polynomial.

39 / 80

Be careful about reduction direction
Note: X ≤P Y does not imply that Y ≤P X and hence it is very important to know
the FROM and TO in a reduction.

To prove X ≤P Y you need to show a reduction FROM X TO Y
That is, show that an algorithm for Y implies an algorithm for X .

40 / 80

THE END
...

(for now)

41 / 80

