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21.4.2

Polynomial-time reductions and hardness
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Polynomial-time reductions and hardness

@ For decision problems X and Y, if X <p Y, and Y has an efficient algorithm, X
has an efficient algorithm.
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Polynomial-time reductions and hardness

@ For decision problems X and Y, if X <p Y, and Y has an efficient algorithm, X
has an efficient algorithm.

@ If you believe that Independent Set does NOT have an efficient algorithm...
© Showed: Independent Set <p Clique

@ — Clique should not be solvable in polynomial time.

© If Clique had an efficient algorithm, so would Independent Set!

Proposition 21.2.

If X <p Y and X does not have an efficient algorithm, Y cannot
have an efficient algorithm.
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Polynomial-time reductions and instance sizes

Proposition 21.3.

Let R be a polynomial-time reduction from X to Y. Then for any instance Ix of X,
the size of the instance Iy of Y produced from Ix by R is polynomial in the size of Ix.
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Let R be a polynomial-time reduction from X to Y. Then for any instance Ix of X,
the size of the instance Iy of Y produced from Ix by R is polynomial in the size of Ix.

Proof.

R is a polynomial-time algorithm and hence on input Ix of size |Ix| it runs in time
p(|Ix|) for some polynomial p().

Iy is the output of R on input Ix.

R can write at most p(|Ix|) bits and hence |ly| < p(|Ix]). O
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Polynomial-time reductions and instance sizes

Proposition 21.3.

Let R be a polynomial-time reduction from X to Y. Then for any instance Ix of X,
the size of the instance Iy of Y produced from Ix by R is polynomial in the size of Ix.

Proof.

R is a polynomial-time algorithm and hence on input Ix of size |Ix| it runs in time
p(|Ix|) for some polynomial p().

Iy is the output of R on input Ix.

R can write at most p(|Ix|) bits and hence |ly| < p(|Ix]). O

Note: Converse is not true. A reduction need not be polynomial-time even if output of
reduction is of size polynomial in its input.
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Polynomial-time Reduction

Definition 21.4.

A polynomial time reduction from a decision problem X to a decision problem Y is an
algorithm A that has the following properties:

© Given an instance Ix of X, A produces an instance Iy of Y.

@ A runs in time polynomial in |Ix|. This implies that |ly| (size of ly) is polynomial
in |Ix|

© Answer to Ix YES <= answer to Iy is YES.
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Polynomial-time Reduction

Definition 21.4.

A polynomial time reduction from a decision problem X to a decision problem Y is an
algorithm A that has the following properties:

© Given an instance Ix of X, A produces an instance Iy of Y.

@ A runs in time polynomial in |Ix|. This implies that |ly| (size of ly) is polynomial
in |Ix|

© Answer to Ix YES <= answer to Iy is YES.

Proposition 21.5.

If X <p Y then a polynomial time algorithm for Y implies a polynomial time algorithm
for X.
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Transitivity of Reductions

Proposition 21.6.
X <pYandY <p Z implies that X <p Z. J
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Transitivity of Reductions

Proposition 21.6.
X <pYand¥Y <p Z implies that X <p Z.

Proof.
© Rx_.y: Polynomial reduction that works in polynomial time f(x).
welLx < w =Rx_y(w) € Ly.
Ry_z: Polynomial reduction that works in polynomial time g(x).
w Ly < w’'=Ry_z(w) € L;
weElLx < w =Rx,y(w) €Ly <= W' =Ry z(Rx>v(w)) € L.
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Transitivity of Reductions

Proposition 21.6.
X <pYand¥Y <p Z implies that X <p Z.

Proof.
© Rx_.y: Polynomial reduction that works in polynomial time f(x).
welLx < w =Rx_y(w) € Ly.
Ry_z: Polynomial reduction that works in polynomial time g(x).
w Ly < w’'=Ry_z(w) € L;
weElLx < w =Rx,y(w) €Ly <= W' =Ry z(Rx>v(w)) € L.
weE Lx <= Ry_z(Rxsv(w)) € Lz
R'(x) = Ry_z(Rx—vy(x)) is a reduction from X to Z.
Running time of R/(x) is h(x) = g(f(x)), which is a polynomial.
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Be careful about reduction direction

Note: X <p Y does not imply that Y <p X and hence it is very important to know
the FROM and TO in a reduction.

To prove X <p Y you need to show a reduction FROM X TO Y
That is, show that an algorithm for Y implies an algorithm for X.
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THE END

(for now)



