Algorithms & Models of Computation

CS/ECE 374, Fall 2020

21.4

Polynomial time reductions

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

21.4.1

A quick review of polynomial time reductions

We say that an algorithm is **efficient** if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

We say that an algorithm is **efficient** if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

We say that an algorithm is **efficient** if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

We say that an algorithm is **efficient** if it runs in polynomial-time.

To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.

A polynomial time reduction from a <u>decision</u> problem X to a <u>decision</u> problem Y is an <u>algorithm</u> A that has the following properties:

- **1** given an instance I_X of X, A produces an instance I_Y of Y
- **2** \mathcal{A} runs in time polynomial in $|I_X|$.
- **3** Answer to I_X YES \iff answer to I_Y is YES.

Proposition 21.1.

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a **Karp reduction**. Most reductions we will need are Karp reductions. Karp reductions are the same as mapping reductions when specialized to polynomial time for the reduction step.

A polynomial time reduction from a <u>decision</u> problem X to a <u>decision</u> problem Y is an <u>algorithm</u> A that has the following properties:

- **1** given an instance I_X of X, A produces an instance I_Y of Y
- 2 \mathcal{A} runs in time polynomial in $|I_X|$.
- **3** Answer to I_X YES \iff answer to I_Y is YES.

Proposition 21.1.

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a <u>Karp reduction</u>. Most reductions we will need are Karp reductions. Karp reductions are the same as mapping reductions when specialized to polynomial time for the reduction step.

Review question: Reductions again...

Let \boldsymbol{X} and \boldsymbol{Y} be two decision problems, such that \boldsymbol{X} can be solved in polynomial time, and $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$. Then

- (A) **Y** can be solved in polynomial time.
- (B) Y can NOT be solved in polynomial time.
- (C) If Y is hard then X is also hard.
- (D) None of the above.
- (E) All of the above.

THE END

...

(for now)