Algorithms & Models of Computation

CS/ECE 374, Fall 2020

21.3

Examples of Reductions

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

21.3.1

Given a graph G, a set of vertices V' is:

lacktriangledown independent set: no two vertices of V' connected by an edge.

Given a graph G, a set of vertices V' is:

1 independent set: no two vertices of V' connected by an edge.

- **1 independent set**: no two vertices of V' connected by an edge.
- 2 clique: every pair of vertices in V' is connected by an edge of G.

- **1** independent set: no two vertices of V' connected by an edge.
- 2 clique: every pair of vertices in V' is connected by an edge of G.

- **1** independent set: no two vertices of V' connected by an edge.
- 2 clique: every pair of vertices in V' is connected by an edge of G.

- **1** independent set: no two vertices of V' connected by an edge.
- 2 clique: every pair of vertices in V' is connected by an edge of G.

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer **k**.

Question: Does G has an independent set of size $\geq k$?

Problem: Clique

Instance: A graph G and an integer **k**.

Question: Does G has a clique of size $\geq k$?

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer **k**.

Question: Does G has an independent set of size $\geq k$?

Problem: Clique

Instance: A graph G and an integer **k**.

Question: Does G has a clique of size $\geq k$?

Recall

For decision problems X, Y, a reduction from X to Y is:

- An algorithm ...
- 2 that takes I_X , an instance of X as input ...
- \bullet and returns I_Y , an instance of Y as output ...
- \bullet such that the solution (YES/NO) to I_Y is the same as the solution to I_X .

An instance of **Independent Set** is a graph G and an integer k.

An instance of **Independent Set** is a graph G and an integer k.

An instance of **Independent Set** is a graph G and an integer k.

Reduction given $\langle G, k \rangle$ outputs $\langle \overline{G}, k \rangle$ where \overline{G} is the <u>complement</u> of G. \overline{G} has an edge $uv \iff uv$ is not an edge of G.

An instance of **Independent Set** is a graph G and an integer k.

Reduction given $\langle G, k \rangle$ outputs $\langle \overline{G}, k \rangle$ where \overline{G} is the <u>complement</u> of G. \overline{G} has an edge $uv \iff uv$ is not an edge of G.

A independent set of size k in $G \iff$ A clique of size k in \overline{G}

Correctness of reduction

Lemma 21.1.

G has an independent set of size $k \iff \overline{G}$ has a clique of size k.

Proof.

Need to prove two facts:

G has independent set of size at least k implies that \overline{G} has a clique of size at least k.

 $\overline{\textbf{\textit{G}}}$ has a clique of size at least $\textbf{\textit{k}}$ implies that $\textbf{\textit{G}}$ has an independent set of size at least $\textbf{\textit{k}}$.

Since $S \subseteq V$ is an independent set in $G \iff S$ is a clique in \overline{G} .

● Independent Set ≤ Clique.

What does this mean?

- If have an algorithm for Clique, then we have an algorithm for Independent Set
- Clique is at least as hard as Independent Set
- Also... Clique ≤ Independent Set. Why? Thus Clique and Independent Set are polnomial-time equivalent.

- Independent Set ≤ Clique. What does this mean?
- ② If have an algorithm for Clique, then we have an algorithm for Independent Set.
- Clique is at least as hard as Independent Set.
- Also... Clique

 Independent Set. Why? Thus Clique and Independent Set are polnomial-time equivalent.

 Independent Set. Why? Thus Clique and Independent Set.

 Independent Set. Why? Thus Cliqu

- Independent Set ≤ Clique. What does this mean?
- ② If have an algorithm for Clique, then we have an algorithm for Independent Set.
- Clique is at least as hard as Independent Set.
- Also... Clique ≤ Independent Set. Why? Thus Clique and Independent Set are polnomial-time equivalent.

- Independent Set ≤ Clique. What does this mean?
- ② If have an algorithm for Clique, then we have an algorithm for Independent Set.
- **3** Clique is at least as hard as Independent Set.
- Also... Clique ≤ Independent Set. Why? Thus Clique and Independent Set are polnomial-time equivalent.

Review: Independent Set and Clique

Assume you can solve the **Clique** problem in T(n) time. Then you can solve the **Independent Set** problem in

- (A) O(T(n)) time.
- (B) $O(n \log n + T(n))$ time.
- (C) $O(n^2T(n^2))$ time.
- (D) $O(n^4T(n^4))$ time.
- (E) $O(n^2 + T(n^2))$ time.
- (F) Does not matter all these are polynomial if T(n) is polynomial, which is good enough for our purposes.

THE END

..

(for now)