
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

21.2
(Polynomial Time) Reductions: Overview
FLNAME:21.2.0.0 ZZZ:21.2.0.0 (Polynomial Time) Reductions: Overview

8 / 80



Reductions
A reduction from Problem X to Problem Y means (informally) that if we have an
algorithm for Problem Y , we can use it to find an algorithm for Problem X .

Using Reductions
1 We use reductions to find algorithms to solve problems.

9 / 80



Reductions
A reduction from Problem X to Problem Y means (informally) that if we have an
algorithm for Problem Y , we can use it to find an algorithm for Problem X .

Using Reductions
1 We use reductions to find algorithms to solve problems.

9 / 80



Reductions
A reduction from Problem X to Problem Y means (informally) that if we have an
algorithm for Problem Y , we can use it to find an algorithm for Problem X .

Using Reductions
1 We use reductions to find algorithms to solve problems.
2 We also use reductions to show that we can’t find algorithms for some problems.

(We say that these problems are hard.)

9 / 80



Reductions for decision problems/languages
For languages LX , LY , a reduction from LX to LY is:

1 An algorithm …
2 Input: w ∈ Σ∗

3 Output: w ′ ∈ Σ∗

4 Such that:
w ∈ LX ⇐⇒ w ′ ∈ LY

(Actually, this is only one type of reduction, but this is the one we’ll use most often.)
There are other kinds of reductions.

10 / 80



Reductions for decision problems/languages
For languages LX , LY , a reduction from LX to LY is:

1 An algorithm …
2 Input: w ∈ Σ∗

3 Output: w ′ ∈ Σ∗

4 Such that:
w ∈ LX ⇐⇒ w ′ ∈ LY

(Actually, this is only one type of reduction, but this is the one we’ll use most often.)
There are other kinds of reductions.

10 / 80



Reductions for decision problems/languages
For decision problems X,Y , a reduction from X to Y is:

1 An algorithm …
2 Input: IX , an instance of X .
3 Output: IY an instance of Y .
4 Such that:

IY is YES instance of Y ⇐⇒ IX is YES instance of X

11 / 80



Using reductions to solve problems
1 R: Reduction X → Y
2 AY : algorithm for Y :
3 =⇒ New algorithm for X :

AX(IX):
// IX: instance of X.
IY ⇐ R(IX)
return AY (IY )

If R and AY polynomial-time =⇒ AX polynomial-time.

12 / 80



Using reductions to solve problems
1 R: Reduction X → Y
2 AY : algorithm for Y :
3 =⇒ New algorithm for X :

AX(IX):
// IX: instance of X.
IY ⇐ R(IX)
return AY (IY )

If R and AY polynomial-time =⇒ AX polynomial-time.

12 / 80



Using reductions to solve problems
1 R: Reduction X → Y
2 AY : algorithm for Y :
3 =⇒ New algorithm for X :

AX(IX):
// IX: instance of X.
IY ⇐ R(IX)
return AY (IY )

AY

IY
YES

NO

IX
R

AX

If R and AY polynomial-time =⇒ AX polynomial-time.

12 / 80



Comparing Problems
1 “Problem X is no harder to solve than Problem Y ”.
2 If Problem X reduces to Problem Y (we write X ≤ Y ), then X cannot be harder

to solve than Y .
3 X ≤ Y :

1 X is no harder than Y , or
2 Y is at least as hard as X .

13 / 80



THE END
...

(for now)

14 / 80


