Algorithms & Models of Computation
CS/ECE 374, Fall 2020

21.2

(Polynomial Time) Reductions: Overview

8/80

Reductions

A reduction from Problem X to Problem Y means (informally) that if we have an
algorithm for Problem Y, we can use it to find an algorithm for Problem X.

9/80

Reductions

A reduction from Problem X to Problem Y means (informally) that if we have an
algorithm for Problem Y, we can use it to find an algorithm for Problem X.

Using Reductions

© We use reductions to find algorithms to solve problems.

9/80

Reductions

A reduction from Problem X to Problem Y means (informally) that if we have an
algorithm for Problem Y, we can use it to find an algorithm for Problem X.

Using Reductions
© We use reductions to find algorithms to solve problems.

© We also use reductions to show that we can’t find algorithms for some problems.
(We say that these problems are hard.)

9/80

Reductions for decision problems/languages

For languages Lx, Ly, a reduction from Lx to Ly is:
Q An algorithm ...
Q Input: w e ¥~
© Output: w’ € =*
@ Such that:

(welx|e=|welLy

10/80

Reductions for decision problems/languages

For languages Lx, Ly, a reduction from Lx to Ly is:
Q An algorithm ...
Q Input: w e ¥~
© Output: w’ € =*
@ Such that:

(welx|e=|welLy

(Actually, this is only one type of reduction, but this is the one we'll use most often.)
There are other kinds of reductions.

10/80

Reductions for decision problems/languages

For decision problems X, Y, a reduction from X to Y is:
Q An algorithm ...
@ Input: Ix, an instance of X.
© Output: Iy an instance of Y.

@ Such that:
Iy is YES instance of Y‘ <~ ‘ Ix is YES instance of X

11/80

Using reductions to solve problems

@ R: Reduction X — Y
@ Ay: algorithm for Y:

12/80

Using reductions to solve problems

@ R: Reduction X — Y
Q@ Ay: algorithm for Y:

© — New algorithm for X:
Ax(lx):

// Ix: instance of X.
ly < R(Ix)
return Ay (ly)

12/80

Using reductions to solve problems

@ R: Reduction X — Y
Q@ Ay: algorithm for Y:
© — New algorithm for X:

Ax(lx):
// Ix: instance of X.
IY = R(Ix)
return Ay (ly)
YES
Ix Iy | v
R Ay
A NO
Ax

If R and Ay polynomial-time = .Ax polynomial-time.

12/80

Comparing Problems

@ “Problem X is no harder to solve than Problem Y.

@ If Problem X reduces to Problem Y (we write X < Y), then X cannot be harder
to solve than Y.

QO X<Y:
@ X is no harder than Y, or
@ Y is at least as hard as X.

13/80

THE END

(for now)

