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Reductions
A reduction from Problem X to Problem Y means (informally) that if we have an
algorithm for Problem Y , we can use it to find an algorithm for Problem X .

Using Reductions
1 We use reductions to find algorithms to solve problems.
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Reductions
A reduction from Problem X to Problem Y means (informally) that if we have an
algorithm for Problem Y , we can use it to find an algorithm for Problem X .

Using Reductions
1 We use reductions to find algorithms to solve problems.
2 We also use reductions to show that we can’t find algorithms for some problems.

(We say that these problems are hard.)
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Reductions for decision problems/languages
For languages LX , LY , a reduction from LX to LY is:

1 An algorithm …
2 Input: w ∈ Σ∗

3 Output: w ′ ∈ Σ∗

4 Such that:
w ∈ LX ⇐⇒ w ′ ∈ LY

(Actually, this is only one type of reduction, but this is the one we’ll use most often.)
There are other kinds of reductions.
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Reductions for decision problems/languages
For decision problems X,Y , a reduction from X to Y is:

1 An algorithm …
2 Input: IX , an instance of X .
3 Output: IY an instance of Y .
4 Such that:

IY is YES instance of Y ⇐⇒ IX is YES instance of X
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Using reductions to solve problems
1 R: Reduction X → Y
2 AY : algorithm for Y :
3 =⇒ New algorithm for X :

AX(IX):
// IX: instance of X.
IY ⇐ R(IX)
return AY (IY )

If R and AY polynomial-time =⇒ AX polynomial-time.
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Comparing Problems
1 “Problem X is no harder to solve than Problem Y ”.
2 If Problem X reduces to Problem Y (we write X ≤ Y ), then X cannot be harder

to solve than Y .
3 X ≤ Y :

1 X is no harder than Y , or
2 Y is at least as hard as X .
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THE END
...

(for now)

14 / 80


