Algorithms & Models of Computation

CS/ECE 374, Fall 2020

21.2

(Polynomial Time) Reductions: Overview

Reductions

A reduction from Problem \boldsymbol{X} to Problem \boldsymbol{Y} means (informally) that if we have an algorithm for Problem \boldsymbol{Y} , we can use it to find an algorithm for Problem \boldsymbol{X} .

Using Reductions

We use reductions to find algorithms to solve problems

Reductions

A reduction from Problem \boldsymbol{X} to Problem \boldsymbol{Y} means (informally) that if we have an algorithm for Problem \boldsymbol{Y} , we can use it to find an algorithm for Problem \boldsymbol{X} .

Using Reductions

• We use reductions to find algorithms to solve problems.

Reductions

A reduction from Problem \boldsymbol{X} to Problem \boldsymbol{Y} means (informally) that if we have an algorithm for Problem \boldsymbol{Y} , we can use it to find an algorithm for Problem \boldsymbol{X} .

Using Reductions

- We use reductions to find algorithms to solve problems.
- We also use reductions to show that we can't find algorithms for some problems. (We say that these problems are hard.)

Reductions for decision problems/languages

For languages L_X , L_Y , a reduction from L_X to L_Y is:

- An algorithm ...
- ② Input: $\mathbf{w} \in \Sigma^*$
- **3** Output: $\mathbf{w'} \in \Sigma^*$
- Such that:

$$w \in L_X \iff w' \in L_Y$$

(Actually, this is only one type of reduction, but this is the one we'll use most often.) There are other kinds of reductions.

Reductions for decision problems/languages

For languages L_X , L_Y , a reduction from L_X to L_Y is:

- An algorithm ...
- ② Input: $\mathbf{w} \in \Sigma^*$
- **3** Output: $\mathbf{w}' \in \Sigma^*$
- Such that:

$$w \in L_X \iff w' \in L_Y$$

(Actually, this is only one type of reduction, but this is the one we'll use most often.) There are other kinds of reductions.

Reductions for decision problems/languages

For decision problems X, Y, a reduction from X to Y is:

- An algorithm ...
- 2 Input: I_X , an instance of X.
- **3** Output: I_Y an instance of Y.
- Such that:

 $|I_Y|$ is YES instance of $Y \iff |I_X|$ is YES instance of X

Using reductions to solve problems

- **1** \mathcal{R} : Reduction $X \to Y$
- \bigcirc $\mathcal{A}_{\mathbf{Y}}$: algorithm for \mathbf{Y} :
- \bigcirc New algorithm for X:

```
\mathcal{A}_X(I_X):

// I_X: instance of X.

I_Y \leftarrow \mathcal{R}(I_X)

return \mathcal{A}_Y(I_Y)
```

If \mathcal{R} and \mathcal{A}_Y polynomial-time $\implies \mathcal{A}_X$ polynomial-time.

Using reductions to solve problems

- **1** \mathcal{R} : Reduction $X \to Y$
- \bigcirc $\mathcal{A}_{\mathbf{Y}}$: algorithm for \mathbf{Y} :
- \bullet New algorithm for X:

```
\mathcal{A}_X(I_X):

// I_X: instance of X.

I_Y \leftarrow \mathcal{R}(I_X)

return \mathcal{A}_Y(I_Y)
```

If \mathcal{R} and \mathcal{A}_Y polynomial-time $\implies \mathcal{A}_X$ polynomial-time.

Using reductions to solve problems

- **1** \mathcal{R} : Reduction $X \to Y$
- \bigcirc $\mathcal{A}_{\mathbf{Y}}$: algorithm for \mathbf{Y} :
- \bullet New algorithm for X:

```
\mathcal{A}_X(I_X):

// I_X: instance of X.

I_Y \leftarrow \mathcal{R}(I_X)

return \mathcal{A}_Y(I_Y)
```


If \mathcal{R} and \mathcal{A}_Y polynomial-time $\implies \mathcal{A}_X$ polynomial-time.

Comparing Problems

- "Problem X is no harder to solve than Problem Y".
- ② If Problem X reduces to Problem Y (we write $X \leq Y$), then X cannot be harder to solve than Y.
- $3 X \leq Y$
 - X is no harder than Y, or
 - Y is at least as hard as X.

THE END

..

(for now)