Algorithms & Models of Computation

CS/ECE 374, Fall 2020

Polynomial Time Reductions

Lecture 21 Tuesday, November 17, 2020

LATEXed: October 20, 2020 16:42

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

21.1

A quick review: Polynomials

What is a polynomial

A **polynomial** is a function of the form:

$$f(x) = \sum_{i=0}^t a_i x^i.$$

For our purposes, we can assume that $a_i \geq 0$, for all i. A term $a_k x^t$ is a **monomial**.

The <u>degree</u> of f(x) is t. We have $f(n) = O(n^t)$.

What is a polynomial

A **polynomial** is a function of the form:

$$f(x) = \sum_{i=0}^t a_i x^i.$$

For our purposes, we can assume that $a_i > 0$, for all i.

A term $a_k x^t$ is a monomial.

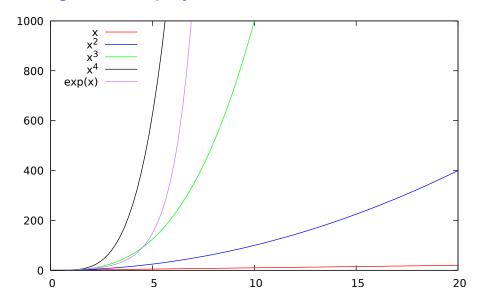
The **degree** of f(x) is t.

We have $f(n) = O(n^t)$.

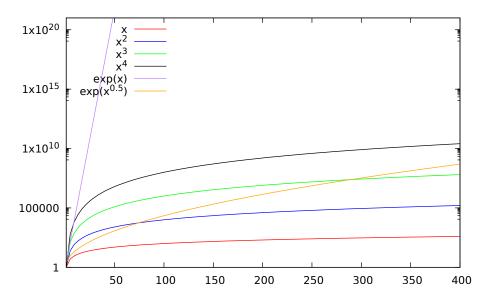
What is a polynomial

A **polynomial** is a function of the form:

$$f(x) = \sum_{i=0}^t a_i x^i.$$


For our purposes, we can assume that $a_i \geq 0$, for all i.

A term $a_k x^t$ is a **monomial**.


The **degree** of f(x) is t.

We have $f(n) = O(n^t)$.

The degree of he polynomial matter...

Polynomial time good, exponential time bad

Combining polynomials

Lemma 21.1.

If $f(x) = \sum_{i=0}^{d} \alpha_i x^i$ is a polynomial of degree d, and $g(y) = \sum_{i=0}^{d'} \beta_i y^i$ is a polynomial of degree d', then g(f(x)) is a polynomial of degree d'd.

Proof.

Observe that $(f(x))^2 = \sum_{i=0}^d \sum_{j=0}^d \alpha_i \alpha_j x^{i+j}$ is a polynomial of degree 2d, Arguing similarly, we have that $(f(x))^i$ is a polynomial of degree $i \cdot d$. Thus

$$g(f(x)) = \sum_{i=0}^{d'} \beta_i (f(x))^i$$

is a sum of polynomials of degree $0, d, 2d, \ldots, d \cdot d'$, which is a polynomial of degree $d \cdot d'$ by collecting monomials of the same degree into a single monomial.

THE END

...

(for now)