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Implementing Prim’s Algorithm
Implementing Prim’s Algorithm

Prim ComputeMST
E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)

while S 6= V do
pick e = (v ,w) ∈ E such that

v ∈ S and w ∈ V − S
e has minimum cost

T = T ∪ e
S = S ∪ w

return the set T

Analysis

1 Number of iterations = O(n), where n is number of vertices

2 Picking e is O(m) where m is the number of edges

3 Total time O(nm)
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Implementing Prim’s Algorithm
More Efficient Implementation

Prim ComputeMST
E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)

for v 6∈ S, a(v) = minw∈S c(w , v)
for v 6∈ S, e(v) = w such that w ∈ S and c(w , v) is minimum

while S 6= V do
pick v with minimum a(v)
T = T ∪ {(e(v), v)}
S = S ∪ {v}
update arrays a and e

return the set T

Maintain vertices in V \ S in a priority queue with key a(v).
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20.6.3
Implementing Prim’s algorithm with priority
queues
FLNAME:20.6.3.0 ZZZ:20.6.3.0 Implementing Prim’s algorithm with priority queues
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Priority Queues

Data structure to store a set S of n elements where each element v ∈ S has an
associated real/integer key k(v) such that the following operations

1 makeQ: create an empty queue

2 findMin: find the minimum key in S
3 extractMin: Remove v ∈ S with smallest key and return it

4 add(v , k(v)): Add new element v with key k(v) to S
5 Delete(v): Remove element v from S
6 decreaseKey (v , k ′(v)): decrease key of v from k(v) (current key) to k ′(v)

(new key). Assumption: k ′(v) ≤ k(v)

7 meld: merge two separate priority queues into one
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Prim’s using priority queues

E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)

for v 6∈ S, a(v) = minw∈S c(w , v)
for v 6∈ S, e(v) = w such that w ∈ S and c(w , v) is minimum

while S 6= V do
pick v with minimum a(v)
T = T ∪ {(e(v), v)}
S = S ∪ {v}
update arrays a and e

return the set T

Maintain vertices in V \ S in a priority queue with key a(v)

1 Requires O(n) extractMin operations

2 Requires O(m) decreaseKey operations
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Running time of Prim’s Algorithm

O(n) extractMin operations and O(m) decreaseKey operations

1 Using standard Heaps, extractMin and decreaseKey take O(log n) time. Total:
O((m + n) log n)

2 Using Fibonacci Heaps, O(log n) for extractMin and O(1) (amortized) for
decreaseKey. Total: O(n log n + m).

3 Prim’s algorithm and Dijkstra’s algorithms are similar. Where is the difference?

4 Prim’s algorithm = Dijkstra where length of a path π is the weight of the heaviest
edge in π. (Bottleneck shortest path.)
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THE END
...

(for now)
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