Algorithms & Models of Computation

CS/ECE 374, Fall 2020

20.5

MST algorithm for negative weights, and non-distinct costs

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties

- $lacksymbol{0}$ $e_i \prec e_j$ if either $c(e_i) < c(e_j)$ or $(c(e_i) = c(e_j)$ and i < j)
- 2 Lexicographic ordering extends to sets of edges. If $A, B \subseteq E$, $A \neq B$ then $A \prec B$ if either c(A) < c(B) or (c(A) = c(B)) and $A \setminus B$ has a lower indexed edge than $B \setminus A$
- \odot Can order all spanning trees according to lexicographic order of their edge sets. Hence there is a unique MST.

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties

- $lackbox{0}$ $e_i \prec e_j$ if either $c(e_i) < c(e_j)$ or $(c(e_i) = c(e_j)$ and i < j)
- 2 Lexicographic ordering extends to sets of edges. If $A, B \subseteq E$, $A \neq B$ then $A \prec B$ if either c(A) < c(B) or (c(A) = c(B)) and $a \setminus B$ has a lower indexed edge than $a \setminus B$
- \odot Can order all spanning trees according to lexicographic order of their edge sets. Hence there is a unique $\overline{\mathrm{MST}}$.

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties

- $lackbox{0}$ $e_i \prec e_j$ if either $c(e_i) < c(e_j)$ or $(c(e_i) = c(e_j)$ and i < j)
- 2 Lexicographic ordering extends to sets of edges. If $A, B \subseteq E$, $A \neq B$ then $A \prec B$ if either c(A) < c(B) or (c(A) = c(B)) and $a \setminus B$ has a lower indexed edge than $a \setminus B$
- \odot Can order all spanning trees according to lexicographic order of their edge sets. Hence there is a unique $\overline{\mathrm{MST}}$.

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties

- $lackbox{0}$ $e_i \prec e_j$ if either $c(e_i) < c(e_j)$ or $(c(e_i) = c(e_j)$ and i < j)
- 2 Lexicographic ordering extends to sets of edges. If $A, B \subseteq E$, $A \neq B$ then $A \prec B$ if either c(A) < c(B) or (c(A) = c(B)) and $a \setminus B$ has a lower indexed edge than $a \setminus A$
- Or Can order all spanning trees according to lexicographic order of their edge sets. Hence there is a unique MST.

Edge Costs: Positive and Negative

- Algorithms and proofs don't assume that edge costs are non-negative! MST algorithms work for arbitrary edge costs.
- Another way to see this: make edge costs non-negative by adding to each edge a large enough positive number. Why does this work for MSTs but not for shortest paths?
- Can compute <u>maximum</u> weight spanning tree by negating edge costs and then computing an MST.

Question: Why does this not work for shortest paths?

Edge Costs: Positive and Negative

- Algorithms and proofs don't assume that edge costs are non-negative! MST algorithms work for arbitrary edge costs.
- Another way to see this: make edge costs non-negative by adding to each edge a large enough positive number. Why does this work for MSTs but not for shortest paths?
- Can compute <u>maximum</u> weight spanning tree by negating edge costs and then computing an MST.

Question: Why does this not work for shortest paths?

THE END

...

(for now)