
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

20.5
MST algorithm for negative weights, and
non-distinct costs
FLNAME:20.5.0.0 ZZZ:20.5.0.0 MST algorithm for negative weights, and non-distinct costs

52 / 73



When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost
to each edge

Formal argument: Order edges lexicographically to break ties

1 ei ≺ ej if either c(ei ) < c(ej ) or (c(ei ) = c(ej ) and i < j)

2 Lexicographic ordering extends to sets of edges. If A,B ⊆ E , A 6= B then
A ≺ B if either c(A) < c(B) or (c(A) = c(B) and A \ B has a lower indexed
edge than B \ A)

3 Can order all spanning trees according to lexicographic order of their edge sets.
Hence there is a unique MST.

Prim’s, Kruskal, and Reverse Delete Algorithms are optimal with respect to
lexicographic ordering.

53 / 73



When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost
to each edge

Formal argument: Order edges lexicographically to break ties

1 ei ≺ ej if either c(ei ) < c(ej ) or (c(ei ) = c(ej ) and i < j)

2 Lexicographic ordering extends to sets of edges. If A,B ⊆ E , A 6= B then
A ≺ B if either c(A) < c(B) or (c(A) = c(B) and A \ B has a lower indexed
edge than B \ A)

3 Can order all spanning trees according to lexicographic order of their edge sets.
Hence there is a unique MST.

Prim’s, Kruskal, and Reverse Delete Algorithms are optimal with respect to
lexicographic ordering.

53 / 73



When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost
to each edge

Formal argument: Order edges lexicographically to break ties

1 ei ≺ ej if either c(ei ) < c(ej ) or (c(ei ) = c(ej ) and i < j)

2 Lexicographic ordering extends to sets of edges. If A,B ⊆ E , A 6= B then
A ≺ B if either c(A) < c(B) or (c(A) = c(B) and A \ B has a lower indexed
edge than B \ A)

3 Can order all spanning trees according to lexicographic order of their edge sets.
Hence there is a unique MST.

Prim’s, Kruskal, and Reverse Delete Algorithms are optimal with respect to
lexicographic ordering.

53 / 73



When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost
to each edge

Formal argument: Order edges lexicographically to break ties

1 ei ≺ ej if either c(ei ) < c(ej ) or (c(ei ) = c(ej ) and i < j)

2 Lexicographic ordering extends to sets of edges. If A,B ⊆ E , A 6= B then
A ≺ B if either c(A) < c(B) or (c(A) = c(B) and A \ B has a lower indexed
edge than B \ A)

3 Can order all spanning trees according to lexicographic order of their edge sets.
Hence there is a unique MST.

Prim’s, Kruskal, and Reverse Delete Algorithms are optimal with respect to
lexicographic ordering.

53 / 73



Edge Costs: Positive and Negative

1 Algorithms and proofs don’t assume that edge costs are non-negative! MST
algorithms work for arbitrary edge costs.

2 Another way to see this: make edge costs non-negative by adding to each edge a
large enough positive number. Why does this work for MSTs but not for shortest
paths?

3 Can compute maximum weight spanning tree by negating edge costs and then
computing an MST.
Question: Why does this not work for shortest paths?

54 / 73



Edge Costs: Positive and Negative

1 Algorithms and proofs don’t assume that edge costs are non-negative! MST
algorithms work for arbitrary edge costs.

2 Another way to see this: make edge costs non-negative by adding to each edge a
large enough positive number. Why does this work for MSTs but not for shortest
paths?

3 Can compute maximum weight spanning tree by negating edge costs and then
computing an MST.
Question: Why does this not work for shortest paths?

54 / 73



THE END
...

(for now)

55 / 73


