Algorithms & Models of Computation

CS/ECE 374, Fall 2020

20.4.2

The safe edges form the MST

Safe Edges form a connected graph

Lemma 20.3.

Let G be a connected graph with distinct edge costs, then the set of safe edges form a connected graph.

Proof.

- Suppose not. Let S be a connected component in the graph induced by the safe edges.
- 2 Consider the edges crossing S, there must be a safe edge among them since edge costs are distinct and so we must have picked it.

Lemma 20.4.

Let G be a connected graph with distinct edge costs, then the set of safe edges does not contain a cycle.

Proof.

Proposition 20.5: proved every edge in graph is either safe or unsafe. If \exists cycle, then by definition the most expensive edge in the cycle is unsafe. Contradiction.

Lemma 20.4.

Let G be a connected graph with distinct edge costs, then the set of safe edges does not contain a cycle.

Proof.

Assume false, and let π a cycle made of safe edges.

e: Most expensive edge in the cycle π .

 $\mathcal{C} = (S, V \setminus S)$: Cut that e is safe for. π must have at least two edges in \mathcal{C} .

f: cheapest edge in $\pi \cap \mathcal{C}$.

e is not cheapest edge in C.

A contradiction

Lemma 20.4.

Let **G** be a connected graph with distinct edge costs, then the set of safe edges does not contain a cycle.

Proof.

Assume false, and let π a cycle made of safe edges.

e: Most expensive edge in the cycle π .

 $\mathcal{C} = (S, V \setminus S)$: Cut that e is safe for.

 π must have at least two edges in \mathcal{C} .

f: cheapest edge in $\pi \cap \mathcal{C}$.

e is not cheapest edge in C.

A contradiction

Lemma 20.4.

Let **G** be a connected graph with distinct edge costs, then the set of safe edges does not contain a cycle.

Proof.

Assume false, and let π a cycle made of safe edges.

e: Most expensive edge in the cycle π .

 $C = (S, V \setminus S)$: Cut that e is safe for.

 π must have at least two edges in C.

f: cheapest edge in $\pi \cap \mathcal{C}$.

e is not cheapest edge in C.

A contradiction

Lemma 20.4.

Let **G** be a connected graph with distinct edge costs, then the set of safe edges does not contain a cycle.

Proof.

Assume false, and let π a cycle made of safe edges.

e: Most expensive edge in the cycle π .

 $C = (S, V \setminus S)$: Cut that e is safe for.

 π must have at least two edges in C.

f: cheapest edge in $\pi \cap \mathcal{C}$.

e is not cheapest edge in C.

A contradiction.

Safe Edges form an MST

Corollary 20.5.

Let G be a connected graph with distinct edge costs, then set of safe edges form the unique MST of G.

Consequence: Every correct \overline{MST} algorithm when G has unique edge costs includes exactly the safe edges.

Safe Edges form an MST

Corollary 20.5.

Let G be a connected graph with distinct edge costs, then set of safe edges form the unique MST of G.

Consequence: Every correct \overline{MST} algorithm when G has unique edge costs includes exactly the safe edges.

THE END

...

(for now)