Algorithms & Models of Computation
CS/ECE 374, Fall 2020

20.3
The Algorithms for computing MST

22/73



Greedy Template

Initially E is the set of all edges in G
T is empty (x T will store edges of a MST *)
while E is not empty do

choose e € E

remove e from E

if (e satisfies condition)

add e to T

return the set T

Main Task: In what order should edges be processed? When should we add edge to
spanning tree?

23/73



Kruskal's Algorithm

Process edges in the order of their costs (starting from the least) and add edges to T
as long as they don't form a cycle.

@ ®

® O,

Figure: Graph G Figure: MST of G

24/73



Kruskal's Algorithm

Process edges in the order of their costs (starting from the least) and add edges to T
as long as they don't form a cycle.

@

® ®

® @

Figure: Graph G Figure: MST of G

24/73



Kruskal's Algorithm

Process edges in the order of their costs (starting from the least) and add edges to T
as long as they don't form a cycle.

®

O, ()

® @

Figure: Graph G Figure: MST of G

24/73



Kruskal's Algorithm

Process edges in the order of their costs (starting from the least) and add edges to T
as long as they don't form a cycle.

® @

Figure: Graph G Figure: MST of G

24/73



Kruskal's Algorithm

Process edges in the order of their costs (starting from the least) and add edges to T
as long as they don't form a cycle.

Figure: Graph G Figure: MST of G

24/73



Kruskal's Algorithm

Process edges in the order of their costs (starting from the least) and add edges to T
as long as they don't form a cycle.

Figure: Graph G Figure: MST of G

24/73



Kruskal's Algorithm

Process edges in the order of their costs (starting from the least) and add edges to T
as long as they don't form a cycle.

Figure: Graph G Figure: MST of G

24/73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T. In each iteration,
pick edge with least attachment cost to T.

25/73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T. In each iteration,
pick edge with least attachment cost to T.

25/73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T. In each iteration,
pick edge with least attachment cost to T.

25/73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T. In each iteration,
pick edge with least attachment cost to T.

25/73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T. In each iteration,
pick edge with least attachment cost to T.

25/73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T. In each iteration,
pick edge with least attachment cost to T.

25/73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T. In each iteration,
pick edge with least attachment cost to T.

25/73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T. In each iteration,
pick edge with least attachment cost to T.

25/73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T. In each iteration,
pick edge with least attachment cost to T.

25/73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T. In each iteration,
pick edge with least attachment cost to T.

25/73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T. In each iteration,
pick edge with least attachment cost to T.

25/73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T. In each iteration,
pick edge with least attachment cost to T.

25/73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T. In each iteration,
pick edge with least attachment cost to T.

25/73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T. In each iteration,
pick edge with least attachment cost to T.

25/73



Prim’s Algorithm: Animation

T maintained by algorithm will be a tree. Start with a node in T. In each iteration,
pick edge with least attachment cost to T.

25/73



Reverse Delete Algorithm

Initially Z is the set of all edges in G
T < Z (* T will store edges of a MST *)
while Z is not empty do
choose e € Z of largest cost
remove e from Z
if removing e does not disconnect T then
remove e from T
return the set T

Returns a minimum spanning tree.

26 /73



Boriivka's Algorithm

Simplest to implement. See notes.
Assume G is a connected graph.

T is @ (* T will store edges of a MST *)
while T is not spanning do
X<+—0
for each connected component S of T do
add to X the cheapest edge between S and V \ S
Add edges in X to T
return the set T

27/73



Boriivka's Algorithm

28/73



Boriivka's Algorithm

28/73



Boriivka's Algorithm

28/73









Boriivka's Algorithm

28/73



Boriivka's Algorithm

28/73



Boriivka's Algorithm

28/73



Boriivka's Algorithm

28/73



Boriivka's Algorithm

28/73



THE END

(for now)



