Algorithms & Models of Computation

CS/ECE 374, Fall 2020

19.6.3

Proving optimality of earliest finish time

- Correctness: Clearly the algorithm returns a set of jobs that does not have any conflicts
- ② For a set of requests R, let O be an optimal set and let X be the set returned by the greedy algorithm. Then O = X? Not likely!

- Correctness: Clearly the algorithm returns a set of jobs that does not have any conflicts
- ② For a set of requests R, let O be an optimal set and let X be the set returned by the greedy algorithm. Then O = X? Not likely!

- Correctness: Clearly the algorithm returns a set of jobs that does not have any conflicts
- ② For a set of requests R, let O be an optimal set and let X be the set returned by the greedy algorithm. Then O = X? Not likely!

- Correctness: Clearly the algorithm returns a set of jobs that does not have any conflicts
- ② For a set of requests R, let O be an optimal set and let X be the set returned by the greedy algorithm. Then O = X? Not likely!

- Correctness: Clearly the algorithm returns a set of jobs that does not have any conflicts
- ② For a set of requests R, let O be an optimal set and let X be the set returned by the greedy algorithm. Then O = X? Not likely!

- Correctness: Clearly the algorithm returns a set of jobs that does not have any conflicts
- ② For a set of requests R, let O be an optimal set and let X be the set returned by the greedy algorithm. Then O = X? Not likely!

Helper Claim

Claim 19.3.

i be first interval picked by Greedy into solution.

O: Optimal solution.

If $i \notin O$, there is exactly one interval $j_1 \in O$ that conflicts with i.

Proof.

- **1** No j ∈ O conflicts i \Longrightarrow O is not opt!
- ② Suppose $j_1, j_2 \in O$ such that $j_1 \neq j_2$ and both j_1 and j_2 conflict with i.
- Since i has earliest finish time, j_1 and i overlap at f(i).
- For same reason j_2 also overlaps with i at f(i).
- Implies that j_1, j_2 overlap at f(i) but intervals in O cannot overlap.

Proof of Optimality: Key Lemma

Lemma 19.4.

 $\emph{\textbf{i}}_1$ be first interval picked by Greedy. There exists an optimum solution that contains $\emph{\textbf{i}}_1.$

Proof.

Let O be an <u>arbitrary</u> optimum solution. If $i_1 \in O$ we are done.

By **Claim 19.3** ...

- ① Exists exactly one $j_1 \in O$ conflicting with i_1 .
- ② Form a new set O' by removing j_1 from O and adding i_1 , that is $O' = (O \{j_1\}) \cup \{i_1\}.$
- \odot From claim, O' is a <u>feasible</u> solution (no conflicts).
- ① Since |O'| = |O|, O' is also an optimum solution and it contains i_1

Proof of Optimality: Key Lemma

Lemma 19.4.

 $\emph{\textbf{i}}_1$ be first interval picked by Greedy. There exists an optimum solution that contains $\emph{\textbf{i}}_1$.

Proof.

Let O be an <u>arbitrary</u> optimum solution. If $i_1 \in O$ we are done.

By **Claim 19.3** ...

- **1** Exists exactly one $j_1 \in O$ conflicting with i_1 .
- ② Form a new set O' by removing j_1 from O and adding i_1 , that is $O' = (O \{j_1\}) \cup \{i_1\}.$
- From claim, O' is a feasible solution (no conflicts).
- ① Since |O'| = |O|, O' is also an optimum solution and it contains i_1 .

Proof of Optimality: Key Lemma

Lemma 19.4.

 $\emph{\textbf{i}}_1$ be first interval picked by Greedy. There exists an optimum solution that contains $\emph{\textbf{i}}_1$.

Proof.

Let O be an <u>arbitrary</u> optimum solution. If $i_1 \in O$ we are done. By Claim 19.3 ...

- **1** Exists exactly one $j_1 \in O$ conflicting with i_1 .
- ② Form a new set O' by removing j_1 from O and adding i_1 , that is $O' = (O \{j_1\}) \cup \{i_1\}.$
- \odot From claim, O' is a feasible solution (no conflicts).
- Since |O'| = |O|, O' is also an optimum solution and it contains i_1 .

Proof by Induction on number of intervals.

Base Case: n = 1. Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for i < n.

Let **K** be an input (i.e., instance) with **n** intervals

 $i_1 \leftarrow$ First interval picked by greedy algorithm.

 $K' \Leftarrow$ The result of removing i_1 and all conflicting intervals from K.

$$|K'| = |K| - 1.$$

G(K), G(K'): Solution produced by Greedy on K and K', respectively.

Lemma 19.4 \Longrightarrow optimum solution O to K with $i_1 \in O$

$$|m{G}(m{K})| = 1 + |m{G}(m{K}')|$$
 from Greedy description $\geq 1 + |m{O}'|$ By induction, $m{G}(m{I}')$ is optimum for $m{I}')$ $= |m{O}|$

Proof by Induction on number of intervals.

Base Case: n = 1. Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for i < n.

Let K be an input (i.e., instance) with n intervals

 $i_1 \leftarrow$ First interval picked by greedy algorithm.

 $K' \leftarrow$ The result of removing i_1 and all conflicting intervals from K.

$$|K'| = |K| - 1.$$

G(K), G(K'): Solution produced by Greedy on K and K', respectively.

Lemma 19.4 \Longrightarrow optimum solution O to K with $i_1 \in O$.

Let
$$O' = O - \{i_1\}$$
. O' is a solution to K'

$$|G(K)| = 1 + |G(K')|$$
 from Greedy description $\geq 1 + |O'|$ By induction, $G(I')$ is optimum for I') $= |O|$

Proof by Induction on number of intervals.

Base Case: n = 1. Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for i < n.

Let K be an input (i.e., instance) with n intervals

 $i_1 \leftarrow$ First interval picked by greedy algorithm.

 ${m K}' \Leftarrow {m T}$ he result of removing ${m i}_1$ and all conflicting intervals from ${m K}$.

$$|K'| = |K| - 1.$$

G(K), G(K'): Solution produced by Greedy on K and K', respectively.

Lemma 19.4 \Longrightarrow optimum solution O to K with $i_1 \in O$.

$$|G(K)| = 1 + |G(K')|$$
 from Greedy description $\geq 1 + |O'|$ By induction, $G(I')$ is optimum for I') $= |O|$

Proof by Induction on number of intervals.

Base Case: n = 1. Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for i < n.

Let K be an input (i.e., instance) with n intervals

 $i_1 \leftarrow$ First interval picked by greedy algorithm.

 $K' \Leftarrow \text{The result of removing } i_1 \text{ and all conflicting intervals from } K.$

$$|K'| = |K| - 1.$$

G(K), G(K'): Solution produced by Greedy on K and K', respectively.

Lemma 19.4 \Longrightarrow optimum solution O to K with $i_1 \in O$.

$$|m{G}(m{K})| = 1 + |m{G}(m{K}')|$$
 from Greedy description $\geq 1 + |m{O}'|$ By induction, $m{G}(m{I}')$ is optimum for $m{I}')$ $= |m{O}|$

Proof by Induction on number of intervals.

Base Case: n = 1. Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for i < n.

Let K be an input (i.e., instance) with n intervals

 $i_1 \leftarrow$ First interval picked by greedy algorithm.

 $K' \Leftarrow$ The result of removing i_1 and all conflicting intervals from K.

$$|\mathbf{K'}| = |\mathbf{K}| - 1.$$

G(K), G(K'): Solution produced by Greedy on K and K', respectively.

Lemma 19.4 \Longrightarrow optimum solution O to K with $i_1 \in O$.

Let
$$O' = O - \{i_1\}$$
. O' is a solution to K'

$$|m{G}(m{K})| = 1 + |m{G}(m{K}')|$$
 from Greedy description $\geq 1 + |m{O}'|$ By induction, $m{G}(m{I}')$ is optimum for $m{I}')$ $= |m{O}|$

Proof by Induction on number of intervals.

Base Case: n = 1. Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for i < n.

Let K be an input (i.e., instance) with n intervals

 $i_1 \leftarrow$ First interval picked by greedy algorithm.

 $K' \Leftarrow$ The result of removing i_1 and all conflicting intervals from K.

$$|\mathbf{K'}| = |\mathbf{K}| - 1.$$

G(K), G(K'): Solution produced by Greedy on K and K', respectively.

Lemma 19.4 \Longrightarrow optimum solution O to K with $i_1 \in O$ let $O' = O - \{i_1\}$ O' is a solution to K'

$$|m{G}(m{K})| = 1 + |m{G}(m{K}')|$$
 from Greedy description $\geq 1 + |m{O}'|$ By induction, $m{G}(m{I}')$ is optimum for $m{I}')$ $= |m{O}|$

Proof by Induction on number of intervals.

Base Case: n = 1. Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for i < n.

Let K be an input (i.e., instance) with n intervals

 $i_1 \leftarrow$ First interval picked by greedy algorithm.

 $K' \Leftarrow$ The result of removing i_1 and all conflicting intervals from K.

$$|\mathbf{K'}| = |\mathbf{K}| - 1.$$

G(K), G(K'): Solution produced by Greedy on K and K', respectively.

Lemma 19.4 \implies optimum solution O to K with $i_1 \in O$.

Let
$$O' = O - \{i_1\}$$
. O' is a solution to K' .

$$|m{G}(m{K})| = 1 + |m{G}(m{K}')|$$
 from Greedy description $\geq 1 + |m{O}'|$ By induction, $m{G}(m{I}')$ is optimum for $m{I}')$ $= |m{O}|$

Proof by Induction on number of intervals.

Base Case: n = 1. Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for i < n.

Let K be an input (i.e., instance) with n intervals

 $i_1 \leftarrow$ First interval picked by greedy algorithm.

 $K' \Leftarrow \text{The result of removing } i_1 \text{ and all conflicting intervals from } K.$

$$|\mathbf{K'}| = |\mathbf{K}| - 1.$$

G(K), G(K'): Solution produced by Greedy on K and K', respectively.

Lemma 19.4 \implies optimum solution O to K with $i_1 \in O$.

$$|G(K)| = 1 + |G(K')|$$
 from Greedy description $\geq 1 + |O'|$ By induction, $G(I')$ is optimum for I') $= |O|$

Proof by Induction on number of intervals.

Base Case: n = 1. Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for i < n.

Let K be an input (i.e., instance) with n intervals

 $i_1 \leftarrow$ First interval picked by greedy algorithm.

 $K' \leftarrow$ The result of removing i_1 and all conflicting intervals from K.

$$|K'| = |K| - 1.$$

G(K), G(K'): Solution produced by Greedy on K and K', respectively.

Lemma 19.4 \implies optimum solution O to K with $i_1 \in O$.

$$|G(K)| = 1 + |G(K')|$$
 from Greedy description $\geq 1 + |O'|$ By induction, $G(I')$ is optimum for I')

Proof by Induction on number of intervals.

Base Case: n = 1. Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for i < n.

Let K be an input (i.e., instance) with n intervals

 $i_1 \leftarrow$ First interval picked by greedy algorithm.

 $K' \Leftarrow \text{The result of removing } i_1 \text{ and all conflicting intervals from } K.$

$$|K'| = |K| - 1.$$

G(K), G(K'): Solution produced by Greedy on K and K', respectively.

Lemma 19.4 \implies optimum solution O to K with $i_1 \in O$.

$$|G(K)| = 1 + |G(K')|$$
 from Greedy description $\geq 1 + |O'|$ By induction, $G(I')$ is optimum for I') $= |O|$

THE END

...

(for now)