Algorithms & Models of Computation
CS/ECE 374, Fall 2020

19.6.3

Proving optimality of earliest finish time
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Proving Optimality

@ Correctness: Clearly the algorithm returns a set of jobs that does not have any
conflicts
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Proving Optimality

@ Correctness: Clearly the algorithm returns a set of jobs that does not have any
conflicts

@ For a set of requests R, let O be an optimal set and let X be the set returned by
the greedy algorithm. Then O = X7 Not likely!

Instead we will show that |O| = | X]|
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Helper Claim

Claim 19.3.

i be first interval picked by Greedy into solution.
O: Optimal solution.
Ifi & O, there is exactly one interval j; € O that conflicts with i.

Proof.
© Noj € O conflicts i = O is not opt!

|
Suppose Jj1,J> € O such that j; # j> and : )
both j; and j, conflict with i. L J2
|

Since i has earliest finish time, j; and i 1 !
—— !

N |

. . . I ;71 : !

For same reason j, also overlaps with i at ! e | !
| |

| |

F(i). :
Implies that ji, j» overlap at f(i) but
intervals in O cannot overlap. ]

2]
o
overlap at f(i). . ,
o
o
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Proof of Optimality: Key Lemma
Lemma 19.4.

iy be first interval picked by Greedy. There exists an optimum solution that contains iy.

Proof.

Let O be an arbitrary optimum solution. If i; € O we are done.
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Proof of Optimality: Key Lemma
Lemma 19.4.

iy be first interval picked by Greedy. There exists an optimum solution that contains iy.

Proof.

Let O be an arbitrary optimum solution. If iy € O we are done.
By Claim 19.3 ...

@ Exists exactly one j; € O conflicting with i;.
@ Form a new set O’ by removing j; from O and adding iy, that is
0" = (0 —{n})u{n}

@ From claim, O’ is a feasible solution (no conflicts).

@ Since |O’| = |0O|, O’ is also an optimum solution and it contains i . O
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Proof of Optimality of Earliest Finish Time First

Proof by Induction on number of intervals.
Base Case: n = 1. Trivial since Greedy picks one interval.
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Proof by Induction on number of intervals.

Base Case: n = 1. Trivial since Greedy picks one interval.

Induction Step: Assume theorem holds for i < n.

Let K be an input (i.e., instance) with n intervals

iy <= First interval picked by greedy algorithm.

K’ <= The result of removing i; and all conflicting intervals from K.
|K'| = |K| — 1.
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Lemma 19.4 —> optimum solution O to K with i; € O.

Let O’ = O — {i}. O’ is a solution to K.

|G(K)| =1+ |G(K")] from Greedy description
> 1+ |0 By induction, G(I") is optimum for I")
= 0|
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THE END

(for now)



