Algorithms & Models of Computation

CS/ECE 374, Fall 2020

19.6 Interval Scheduling

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

19.6.1

Problem statement, and a few greedy algorithms that do not work

Interval Scheduling

Problem 19.1 (Interval Scheduling).

Input: A set of jobs with start and finish times to be scheduled on a resource (example: classes and class rooms).

Goal: Schedule as many jobs as possible

Two jobs with overlapping intervals cannot both be scheduled.

Interval Scheduling

Problem 19.1 (Interval Scheduling).

Input: A set of jobs with start and finish times to be scheduled on a resource (example: classes and class rooms).

Goal: Schedule as many jobs as possible

Two jobs with overlapping intervals cannot both be scheduled!

Greedy Template

```
R is the set of all requests X \leftarrow \emptyset (* X will store all the jobs that will be scheduled *) while R is not empty do choose i \in R add i to X remove from R all requests that overlap with i return the set X
```

Main task: Decide the order in which to process requests in R

Greedy Template

```
R is the set of all requests X \leftarrow \emptyset (* X will store all the jobs that will be scheduled *) while R is not empty do choose i \in R add i to X remove from R all requests that overlap with i return the set X
```

Main task: Decide the order in which to process requests in R

Process jobs in the order of their starting times, beginning with those that start earliest.

Figure: Counter example for earliest start time

Process jobs in the order of their starting times, beginning with those that start earliest.

Figure: Counter example for earliest start time

Process jobs in the order of their starting times, beginning with those that start earliest.

Figure: Counter example for earliest start time

Process jobs in the order of processing time, starting with jobs that require the shortest processing.

44 / 63

Process jobs in the order of processing time, starting with jobs that require the shortest processing.

Figure: Counter example for smallest processing time

Process jobs in the order of processing time, starting with jobs that require the shortest processing.

Figure: Counter example for smallest processing time

Process jobs in the order of processing time, starting with jobs that require the shortest processing.

Figure: Counter example for smallest processing time

Process jobs in that have the fewest "conflicts" first.	
	-

Process jobs in that hav	ve the fewest '	'conflicts"	first.
			

Process jobs in that have the fewest "conflicts" first.

Process jobs in that have the fewest "conflicts" first.

Process jobs in that have the fewest "conflicts" first.

THE END

...

(for now)