Algorithms & Models of Computation

CS/ECE 374, Fall 2020

18.5

Summary of shortest path algorithms

Summary of results on shortest paths

Single source		
No negative edges	Dijkstra	$O(n \log n + m)$
Edge lengths can be negative	Bellman Ford	O (nm)

All Pairs Shortest Paths

No negative edges	n * Dijkstra	$O(n^2 \log n + nm)$
No negative cycles	n * Bellman Ford	$O(n^2m) = O(n^4)$
No negative cycles (*)	BF + n * Dijkstra	$O(nm + n^2 \log n)$
No negative cycles	Floyd-Warshall	$O(n^3)$
Unweighted	Matrix multiplication	$O(n^{2.38}), O(n^{2.58})$

Summary of results on shortest paths

More details

(*): The algorithm for the case that there are no negative cycles, and doing all shortest paths, works by computing a potential function using **Bellman-Ford** and then doing **Dijkstra**. It is mentioned for the sake of completeness, but it outside the scope of the class.

THE END

...

(for now)