Algorithms & Models of Computation
CS/ECE 374, Fall 2020

18.4.2
All Pairs Shortest Paths: A recursive
solution

67/95



All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, va, ..., v,

@ dist(i,j, k): length of shortest walk from v; to v; among all walks in which the
largest index of an intermediate node is at most k (could be —oo if there is a

negative length cycle).

dist(i, j,
dist(i, j,
dist(i, j,
dist(i, j,

0)
1)
2)
3)

68/95



All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, va, ..., v,
@ dist(i,j, k): length of shortest walk from v; to v; among all walks in which the

largest index of an intermediate node is at most k (could be —oo if there is a
negative length cycle).

dist(i, j, = 100
dist(i, j,
dist(i, j,

(

0)
1)
2)
dist (i, j, 3)

68/95



All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, va, ..., v,
@ dist(i,j, k): length of shortest walk from v; to v; among all walks in which the

largest index of an intermediate node is at most k (could be —oo if there is a
negative length cycle).

dist(i,j,0) = 100
dist(i,j,1) = 9
dist(i,j,2) =
dist(i, j,3) =

68/95



All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, va, ..., v,
@ dist(i,j, k): length of shortest walk from v; to v; among all walks in which the

largest index of an intermediate node is at most k (could be —oo if there is a
negative length cycle).

dist(i,j,0) = 100
dist(i,j,1) = 9
dist(i,j,2) = 8
dist(i, j,3) =

68/95



All-Pairs: Recursion on index of intermediate nodes

© Number vertices arbitrarily as vy, va, ..., v,

@ dist(i,j, k): length of shortest walk from v; to v; among all walks in which the
largest index of an intermediate node is at most k (could be —oo if there is a
negative length cycle).

dist(i,j,0) = 100
dist(i,j,1) = 9
dist(i,j,2) = 8
dist(i,j,3) = 5

68/95



For the following graph, dist(i, j, 2) is...

@3@

10
11
12
15

69 /95



All-Pairs: Recursion on index of intermediate nodes

dist(i, j, k — 1)

dist(i,j, k — 1
dist(i, j, k) — min 4 St ik =1)
dist(i, k, k — 1) + dist(k, j, k — 1)
Base case: dist(i, j,0) = £(i,j) if (i,j) € E, otherwise co
Correctness: If i — j shortest walk goes through k then k occurs only once on the

path — otherwise there is a negative length cycle.
70/95



All-Pairs: Recursion on index of intermediate nodes

If i can reach k and k can reach j and dist(k, k, k — 1) < 0 then G has a negative
length cycle containing k and dist(i, j, k) = —oo.

Recursion below is valid only if dist(k, k, k — 1) > 0. We can detect this during the
algorithm or wait till the end.
dist(i, j, k — 1)

dist(i,j, k) = min¢ = > . .
dist(i, k, k — 1) + dist(k,j, k — 1)

71/95



THE END

(for now)



