
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

18.4
All Pairs Shortest Paths
FLNAME:18.4.0.0 ZZZ:18.4.0.0 All Pairs Shortest Paths

61 / 95



Algorithms & Models of Computation
CS/ECE 374, Fall 2020

18.4.1
Problem definition and what we can already
do
FLNAME:18.4.1.0 ZZZ:18.4.1.0 Problem definition and what we can already do

62 / 95



Shortest Path Problems
Shortest Path Problems

Input A (undirected or directed) graph G = (V ,E) with edge lengths (or costs).
For edge e = (u, v), `(e) = `(u, v) is its length.

1 Given nodes s, t find shortest path from s to t.
2 Given node s find shortest path from s to all other nodes.
3 Find shortest paths for all pairs of nodes.

63 / 95



SSSP: Single-Source Shortest Paths
Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V ,E) with edge lengths. For edge
e = (u, v), `(e) = `(u, v) is its length.

1 Given nodes s, t find shortest path from s to t.
2 Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running time: O((m + n) log n)
with heaps and O(m + n log n) with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time: O(nm).

64 / 95



SSSP: Single-Source Shortest Paths
Single-Source Shortest Path Problems

Input A (undirected or directed) graph G = (V ,E) with edge lengths. For edge
e = (u, v), `(e) = `(u, v) is its length.

1 Given nodes s, t find shortest path from s to t.
2 Given node s find shortest path from s to all other nodes.

Dijkstra’s algorithm for non-negative edge lengths. Running time: O((m + n) log n)
with heaps and O(m + n log n) with advanced priority queues.

Bellman-Ford algorithm for arbitrary edge lengths. Running time: O(nm).

64 / 95



All-Pairs Shortest Paths
Using the shortest paths algorithms we already have...

All-Pairs Shortest Path Problem
Input A (undirected or directed) graph G = (V ,E) with edge lengths. For edge

e = (u, v), `(e) = `(u, v) is its length.
1 Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.
1 Non-negative lengths. O(nm log n) with heaps and O(nm + n2 log n) using

advanced priority queues.
2 Arbitrary edge lengths: O(n2m).

Θ
(
n4) if m = Ω

(
n2).

Can we do better?
65 / 95



All-Pairs Shortest Paths
Using the shortest paths algorithms we already have...

All-Pairs Shortest Path Problem
Input A (undirected or directed) graph G = (V ,E) with edge lengths. For edge

e = (u, v), `(e) = `(u, v) is its length.
1 Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.
1 Non-negative lengths. O(nm log n) with heaps and O(nm + n2 log n) using

advanced priority queues.
2 Arbitrary edge lengths: O(n2m).

Θ
(
n4) if m = Ω

(
n2).

Can we do better?
65 / 95



All-Pairs Shortest Paths
Using the shortest paths algorithms we already have...

All-Pairs Shortest Path Problem
Input A (undirected or directed) graph G = (V ,E) with edge lengths. For edge

e = (u, v), `(e) = `(u, v) is its length.
1 Find shortest paths for all pairs of nodes.

Apply single-source algorithms n times, once for each vertex.
1 Non-negative lengths. O(nm log n) with heaps and O(nm + n2 log n) using

advanced priority queues.
2 Arbitrary edge lengths: O(n2m).

Θ
(
n4) if m = Ω

(
n2).

Can we do better?
65 / 95



THE END
...

(for now)

66 / 95


