
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

18.3
Shortest Paths in DAGs
FLNAME:18.3.0.0 ZZZ:18.3.0.0 Shortest Paths in DAGs

54 / 95



Shortest Paths in a DAG
Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V ,E) with arbitrary (including negative)
edge lengths. For edge e = (u, v), `(e) = `(u, v) is its length.

1 Given nodes s, t find shortest path from s to t.
2 Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs
1 No cycles and hence no negative length cycles! Hence can find shortest paths even

for negative length edges
2 Can order nodes using topological sort

55 / 95



Shortest Paths in a DAG
Single-Source Shortest Path Problems

Input A directed acyclic graph G = (V ,E) with arbitrary (including negative)
edge lengths. For edge e = (u, v), `(e) = `(u, v) is its length.

1 Given nodes s, t find shortest path from s to t.
2 Given node s find shortest path from s to all other nodes.

Simplification of algorithms for DAGs
1 No cycles and hence no negative length cycles! Hence can find shortest paths even

for negative length edges
2 Can order nodes using topological sort

55 / 95



Algorithm for DAGs
1 Want to find shortest paths from s. Ignore nodes not reachable from s.
2 Let s = v1, v2, vi+1, . . . , vn be a topological sort of G

Observation:
1 shortest path from s to vi cannot use any node from vi+1, . . . , vn
2 can find shortest paths in topological sort order.

56 / 95



Algorithm for DAGs
1 Want to find shortest paths from s. Ignore nodes not reachable from s.
2 Let s = v1, v2, vi+1, . . . , vn be a topological sort of G

Observation:
1 shortest path from s to vi cannot use any node from vi+1, . . . , vn
2 can find shortest paths in topological sort order.

56 / 95



Algorithm for DAGs
for i = 1 to n do

d(s, vi ) =∞
d(s, s) = 0

for i = 1 to n − 1 do
for each edge (vi , vj ) in Adj(vi ) do

d(s, vj ) = min{d(s, vj ), d(s, vi ) + `(vi , vj )}

return d(s, ·) values computed

Correctness: induction on i and observation in previous slide.
Running time: O(m + n) time algorithm! Works for negative edge lengths and hence
can find longest paths in a DAG.

57 / 95



Bellman-Ford and DAGs
Bellman-Ford is based on the following principles:

The shortest walk length from s to v with at most k hops can be computed via
dynamic programming
G has a negative length cycle reachable from s iff there is a node v such that
shortest walk length reduces after n hops.

We can find hop-constrained shortest paths via graph reduction.
Given G = (V ,E) with edge lengths `(e) and integer k construction new layered graph
G ′ = (V ′,E ′) as follows.

V ′ = V × {0, 1, 2, . . . , k}.
E ′ = {((u, i), (v, i + 1) | (u, v) ∈ E , 0 ≤ i < k},
`((u, i), (v, i + 1)) = `(u, v)

Lemma 18.1.
Shortest path distance from (u, 0) to (v, k) in G ′ is equal to the shortest walk from u
to v in G with exactly k edges.

58 / 95



Layered DAG: Figure

59 / 95



THE END
...

(for now)

60 / 95


