
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

18.2.3.1
Correctness of the Bellman-Ford Algorithm
FLNAME:18.2.3.1 ZZZ:18.2.3.1 Correctness of the Bellman-Ford Algorithm

38 / 95



Bellman-Ford Algorithm: Modified for analysis
for each u ∈ V do

d(u, 0)←∞
d(s, 0)← 0

for k = 1 to n do
for each v ∈ V do

d(v, k)← d(v, k − 1)
for each edge (u, v) ∈ in(v) do

d(v, k) = min{d(v, k), d(u, k − 1) + `(u, v)}

for each v ∈ V do
dist(s, v)← d(v, n − 1)

39 / 95



Walks computed correctly
Lemma 18.3.
For each v , d(v, k) is the length of a shortest walk from s to v with at most k hops.

Proof.
Standard induction (left as exercise).

40 / 95



Bellman-Ford computes the shortest paths correctly
Lemma 18.4.
If G does not has a negative length cycle reachable from s =⇒ ∀v :
d(v, n) = d(v, n − 1).

Also, d(v, n − 1) is the length of the shortest path between s and v .

Proof.
Shortest walk from s to reachable vertex is a path [not repeated vertex]
(otherwise ∃ neg cycle).
A path has at most n − 1 edges.
=⇒ Len shortest walk from s to v with at most n − 1 edges
= Len shortest walk from s to v
= Len shortest path from s to v .
By Lemma 18.3 : d(v, n) = d(v, n − 1) = dist(s, v), for all v .

41 / 95



Bellman-Ford computes the shortest paths correctly
Lemma 18.4.
If G does not has a negative length cycle reachable from s =⇒ ∀v :
d(v, n) = d(v, n − 1).

Also, d(v, n − 1) is the length of the shortest path between s and v .

Proof.
Shortest walk from s to reachable vertex is a path [not repeated vertex]
(otherwise ∃ neg cycle).
A path has at most n − 1 edges.
=⇒ Len shortest walk from s to v with at most n − 1 edges
= Len shortest walk from s to v
= Len shortest path from s to v .
By Lemma 18.3 : d(v, n) = d(v, n − 1) = dist(s, v), for all v .

41 / 95



Bellman-Ford computes the shortest paths correctly
Lemma 18.4.
If G does not has a negative length cycle reachable from s =⇒ ∀v :
d(v, n) = d(v, n − 1).

Also, d(v, n − 1) is the length of the shortest path between s and v .

Proof.
Shortest walk from s to reachable vertex is a path [not repeated vertex]
(otherwise ∃ neg cycle).
A path has at most n − 1 edges.
=⇒ Len shortest walk from s to v with at most n − 1 edges
= Len shortest walk from s to v
= Len shortest path from s to v .
By Lemma 18.3 : d(v, n) = d(v, n − 1) = dist(s, v), for all v .

41 / 95



Bellman-Ford computes the shortest paths correctly
Lemma 18.4.
If G does not has a negative length cycle reachable from s =⇒ ∀v :
d(v, n) = d(v, n − 1).

Also, d(v, n − 1) is the length of the shortest path between s and v .

Proof.
Shortest walk from s to reachable vertex is a path [not repeated vertex]
(otherwise ∃ neg cycle).
A path has at most n − 1 edges.
=⇒ Len shortest walk from s to v with at most n − 1 edges
= Len shortest walk from s to v
= Len shortest path from s to v .
By Lemma 18.3 : d(v, n) = d(v, n − 1) = dist(s, v), for all v .

41 / 95



Bellman-Ford computes the shortest paths correctly
Lemma 18.4.
If G does not has a negative length cycle reachable from s =⇒ ∀v :
d(v, n) = d(v, n − 1).

Also, d(v, n − 1) is the length of the shortest path between s and v .

Proof.
Shortest walk from s to reachable vertex is a path [not repeated vertex]
(otherwise ∃ neg cycle).
A path has at most n − 1 edges.
=⇒ Len shortest walk from s to v with at most n − 1 edges
= Len shortest walk from s to v
= Len shortest path from s to v .
By Lemma 18.3 : d(v, n) = d(v, n − 1) = dist(s, v), for all v .

41 / 95



Bellman-Ford computes the shortest paths correctly
Lemma 18.4.
If G does not has a negative length cycle reachable from s =⇒ ∀v :
d(v, n) = d(v, n − 1).

Also, d(v, n − 1) is the length of the shortest path between s and v .

Proof.
Shortest walk from s to reachable vertex is a path [not repeated vertex]
(otherwise ∃ neg cycle).
A path has at most n − 1 edges.
=⇒ Len shortest walk from s to v with at most n − 1 edges
= Len shortest walk from s to v
= Len shortest path from s to v .
By Lemma 18.3 : d(v, n) = d(v, n − 1) = dist(s, v), for all v .

41 / 95



THE END
...

(for now)

42 / 95


