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Bellman-Ford Algorithm: Modified for analysis
for each u ∈ V do

d(u, 0)←∞
d(s, 0)← 0

for k = 1 to n do
for each v ∈ V do

d(v, k)← d(v, k − 1)
for each edge (u, v) ∈ in(v) do

d(v, k) = min{d(v, k), d(u, k − 1) + `(u, v)}

for each v ∈ V do
dist(s, v)← d(v, n − 1)
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Walks computed correctly
Lemma 18.3.
For each v , d(v, k) is the length of a shortest walk from s to v with at most k hops.

Proof.
Standard induction (left as exercise).
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Bellman-Ford computes the shortest paths correctly
Lemma 18.4.
If G does not has a negative length cycle reachable from s =⇒ ∀v :
d(v, n) = d(v, n − 1).

Also, d(v, n − 1) is the length of the shortest path between s and v .

Proof.
Shortest walk from s to reachable vertex is a path [not repeated vertex]
(otherwise ∃ neg cycle).
A path has at most n − 1 edges.
=⇒ Len shortest walk from s to v with at most n − 1 edges
= Len shortest walk from s to v
= Len shortest path from s to v .
By Lemma 18.3 : d(v, n) = d(v, n − 1) = dist(s, v), for all v .
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THE END
...

(for now)
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