Algorithms & Models of Computation

CS/ECE 374, Fall 2020

18.2.2

Shortest path via number of hops

Shortest Paths and Recursion

- Compute the shortest path distance from s to t recursively?
- What are the smaller sub-problems?

Lemma 18.2

Let **G** be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

ullet $s=oldsymbol{v}_0
ightarrowoldsymbol{v}_1
ightarrowoldsymbol{v}_2
ightarrow\ldots
ightarrowoldsymbol{v}_i$ is a shortest path from s to $oldsymbol{v}_i$

Sub-problem idea: paths of fewer hops/edges

Shortest Paths and Recursion

Compute the shortest path distance from s to t recursively?

 \bullet $s = \mathbf{v}_0 \rightarrow \mathbf{v}_1 \rightarrow \mathbf{v}_2 \rightarrow \ldots \rightarrow \mathbf{v}_i$ is a shortest path from s to \mathbf{v}_i

What are the smaller sub-problems?

Lemma 18.2.

Let **G** be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from **s** to v_k then for $1 \leq i < k$:

Sub-problem idea: paths of fewer hops/edges

Shortest Paths and Recursion

Compute the shortest path distance from s to t recursively?

 \bullet $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i$ is a shortest path from s to v_i

What are the smaller sub-problems?

Lemma 18.2.

Let **G** be a directed graph with arbitrary edge lengths. If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k$ is a shortest path from s to v_k then for $1 \leq i < k$:

Sub-problem idea: paths of fewer hops/edges

Single-source problem: fix source s. Assume that all nodes can be reached by s in GAssume G has no negative-length cycle (for now).

d(v, k): shortest walk length from s to v using at most k edges.

Note: dist(s, v) = d(v, n - 1). Recursion for d(v, k):

$$oldsymbol{d}(oldsymbol{v},oldsymbol{k}) = \min egin{cases} \min_{oldsymbol{u} \in oldsymbol{V}} (oldsymbol{d}(oldsymbol{u},oldsymbol{k}-oldsymbol{1}) + \ell(oldsymbol{u},oldsymbol{v}). \ oldsymbol{d}(oldsymbol{v},oldsymbol{k}-oldsymbol{1}) \end{cases}$$

Single-source problem: fix source s. Assume that all nodes can be reached by s in GAssume G has no negative-length cycle (for now).

d(v, k): shortest walk length from s to v using at most k edges.

Note: dist(s, v) = d(v, n - 1). Recursion for d(v, k):

$$oldsymbol{d}(oldsymbol{v},oldsymbol{k}) = \min egin{cases} \min_{oldsymbol{u} \in oldsymbol{V}} (oldsymbol{d}(oldsymbol{u},oldsymbol{k}-oldsymbol{1}) + \ell(oldsymbol{u},oldsymbol{v}). \ oldsymbol{d}(oldsymbol{v},oldsymbol{k}-oldsymbol{1}) \end{cases}$$

Single-source problem: fix source s. Assume that all nodes can be reached by s in GAssume G has no negative-length cycle (for now).

d(v, k): shortest walk length from s to v using at most k edges.

Note: dist(s, v) = d(v, n - 1). Recursion for d(v, k):

$$oldsymbol{d}(oldsymbol{v},oldsymbol{k}) = \min egin{cases} \min_{oldsymbol{u} \in oldsymbol{V}} (oldsymbol{d}(oldsymbol{u},oldsymbol{k}-oldsymbol{1}) + \ell(oldsymbol{u},oldsymbol{v}). \ oldsymbol{d}(oldsymbol{v},oldsymbol{k}-oldsymbol{1}) \end{cases}$$

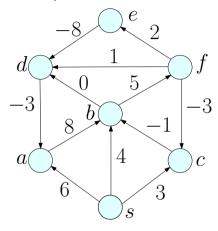
Single-source problem: fix source s.
Assume that all nodes can be reached by s in G

Assume G has no negative-length cycle (for now).

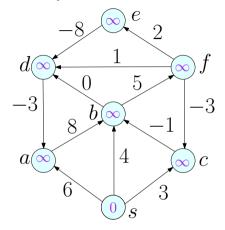
d(v, k): shortest walk length from s to v using at most k edges.

Note: dist(s, v) = d(v, n - 1). Recursion for d(v, k):

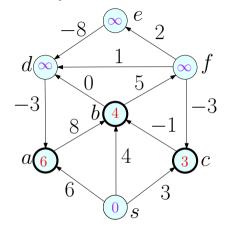
$$oldsymbol{d}(oldsymbol{v},oldsymbol{k}) = \min egin{cases} \min_{oldsymbol{u} \in oldsymbol{V}} oldsymbol{d}(oldsymbol{u},oldsymbol{k}-oldsymbol{1}) + \ell(oldsymbol{u},oldsymbol{v}). \ oldsymbol{d}(oldsymbol{v},oldsymbol{k}-oldsymbol{1}) \end{cases}$$



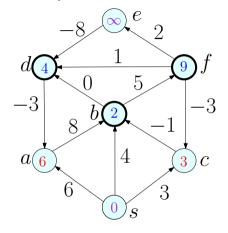
round	S	а	b	С	d	е	f



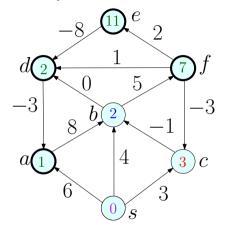
round	S	а	b	С	d	е	f
0	0	∞	∞	∞	∞	∞	∞



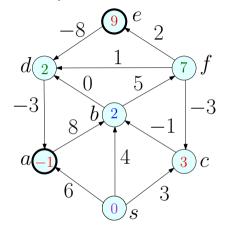
round	s	а	b	С	d	е	f
0	0	∞	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞	∞



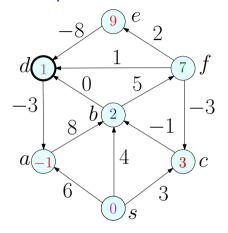
round	S	а	b	С	d	е	f
0	0	∞	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞	∞
2	0	6	2	3	4	∞	9



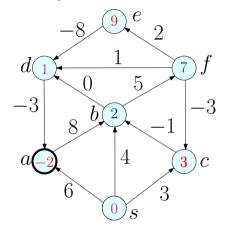
round	S	а	b	С	d	е	f
0	0	∞	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞	∞
2	0	6	2	3	4	∞	9
3	0	1	2	3	2	11	7



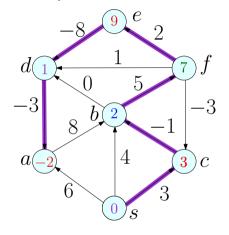
round	S	а	b	С	d	е	f
0	0	∞	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞	∞
2	0	6	2	3	4	∞	9
3	0	1	2	3	2	11	7
4	0	-1	2	3	2	9	7
							•



round	S	а	b	С	d	е	f
0	0	∞	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞	∞
2	0	6	2	3	4	∞	9
3	0	1	2	3	2	11	7
4	0	-1	2	3	2	9	7
5	0	-1	2	3	1	9	7



round	S	а	b	С	d	е	f
0	0	∞	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞	∞
2	0	6	2	3	4	∞	9
3	0	1	2	3	2	11	7
4	0	-1	2	3	2	9	7
5	0	-1	2	3	1	9	7
6	0	-2	2	3	1	9	7



round	S	а	b	С	d	е	f
0	0	∞	∞	∞	∞	∞	∞
1	0	6	4	3	∞	∞	∞
2	0	6	2	3	4	∞	9
3	0	1	2	3	2	11	7
4	0	-1	2	3	2	9	7
5	0	-1	2	3	1	9	7
6	0	-2	2	3	1	9	7

THE END

...

(for now)