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Shortest Paths with Negative Lengths
Lemma 18.1.
Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk then for 1 ≤ i < k:

1 s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to vi
2 False: dist(s, vi) ≤ dist(s, vk) for 1 ≤ i < k. Holds true only for non-negative

edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.
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THE END
...

(for now)
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