Algorithms & Models of Computation

CS/ECE 374, Fall 2020

18.1.3

Restating problem of Shortest path with negative edges

Alternatively: Finding Shortest Walks

Given a graph $\boldsymbol{G} = (\boldsymbol{V}, \boldsymbol{E})$:

- **1** A path is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$.
- ② A walk is a sequence of vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$. Vertices are allowed to repeat.

Define dist(u, v) to be the length of a shortest walk from u to v.

- If there is a walk from \boldsymbol{u} to \boldsymbol{v} that contains negative length cycle then $dist(\boldsymbol{u},\boldsymbol{v})=-\infty$
- 2 Else there is a path with at most n-1 edges whose length is equal to the length of a shortest walk and dist(u, v) is finite

Helpful to think about walks

Shortest Paths with Negative Edge Lengths

Problems

Algorithmic Problems

Input: A directed graph G = (V, E) with edge lengths (could be negative). For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

Questions:

- Given nodes s, t, either find a negative length cycle C that s can reach or find a shortest path from s to t.
- ② Given node s, either find a negative length cycle C that s can reach or find shortest path distances from s to all reachable nodes.
- 3 Check if G has a negative length cycle or not.

Shortest Paths with Negative Edge Lengths

In Undirected Graphs

<u>Note</u>: With negative lengths, shortest path problems and negative cycle detection in undirected graphs cannot be reduced to directed graphs by bi-directing each undirected edge. Why?

Problem can be solved efficiently in undirected graphs but algorithms are different and significantly more involved than those for directed graphs. One need to compute T-joins in the relevant graph. Pretty painful stuff.

THE END

...

(for now)