Algorithms & Models of Computation

CS/ECE 374, Fall 2020

18.1.2

But wait! Things get worse: Negative cycles

Negative Length Cycles

Definition 18.2.

A cycle ${m C}$ is a negative length cycle if the sum of the edge lengths of ${m C}$ is negative.

Negative Length Cycles

Definition 18.2.

A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.

Negative Length Cycles

Definition 18.2.

A cycle C is a negative length cycle if the sum of the edge lengths of C is negative.

What is the shortest path distance between s and t? Reminder: Paths have to be simple...

Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

- $oldsymbol{0}$ $oldsymbol{G}$ has a negative length cycle $oldsymbol{C}$, and
- s can reach C and C can reach t.

Question: What is the shortest <u>distance</u> from **s** to **t**? Possible answers: Define shortest distance to be:

- \bigcirc undefined, that is $-\infty$, OR
- ② the length of a shortest $\underline{\text{simple}}$ path from s to t.

Shortest Paths and Negative Cycles

Given G = (V, E) with edge lengths and s, t. Suppose

- $oldsymbol{0}$ $oldsymbol{G}$ has a negative length cycle $oldsymbol{C}$, and
- s can reach C and C can reach t.

Question: What is the shortest <u>distance</u> from *s* to *t*? Possible answers: Define shortest distance to be:

- \bullet undefined, that is $-\infty$, OR
- ② the length of a shortest $\underline{\text{simple}}$ path from s to t.

Really bad new about negative edges, and shortest path...

Lemma 18.3.

If there is an efficient algorithm to find a shortest simple $s \to t$ path in a graph with negative edge lengths, then there is an efficient algorithm to find the <u>longest</u> simple $s \to t$ path in a graph with positive edge lengths.

Finding the $s \rightarrow t$ longest path is difficult. NP-Hard!

THE END

...

(for now)