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18.1
Shortest Paths with Negative Length Edges
FLNAME:18.1.0.0 ZZZ:18.1.0.0 Shortest Paths with Negative Length Edges
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18.1.1
Why Dijkstra’s algorithm fails with negative
edges
FLNAME:18.1.1.0 ZZZ:18.1.1.0 Why Dijkstra’s algorithm fails with negative edges
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Single-Source Shortest Paths with Negative Edge Lengths
Problem statement

Single-Source Shortest Path
Problems
Input: A directed graph G = (V ,E)
with arbitrary (including negative) edge
lengths. For edge e = (u, v),
`(e) = `(u, v) is its length.

1 Given nodes s, t find shortest path
from s to t.

2 Given node s find shortest path
from s to all other nodes.
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What are the distances computed by Dijkstra’s algorithm?
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The distance as computed by Dijk-
stra algorithm starting from s:

(A) s = 0, x = 5, y = 1, z = 0.
(B) s = 0, x = 1, y = 2, z = 5.
(C) s = 0, x = 5, y = 1, z = 2.
(D) IDK.
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Dijkstra’s Algorithm and Negative Lengths
With negative length edges, Dijkstra’s algorithm can fail
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False assumption: Dijkstra’s algorithm is based on the assumption that if
s = v0 → v1 → v2 . . .→ vk is a shortest path from s to vk then
dist(s, vi) ≤ dist(s, vi+1) for 0 ≤ i < k. Holds true only for non-negative edge
lengths.
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Shortest Paths with Negative Lengths
Lemma 18.1.
Let G be a directed graph with arbitrary edge lengths. If
s = v0 → v1 → v2 → . . .→ vk is a shortest path from s to vk then for 1 ≤ i < k:

1 s = v0 → v1 → v2 → . . .→ vi is a shortest path from s to vi
2 False: dist(s, vi) ≤ dist(s, vk) for 1 ≤ i < k. Holds true only for non-negative

edge lengths.

Cannot explore nodes in increasing order of distance! We need other strategies.
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THE END
...

(for now)
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