Algorithms & Models of Computation

CS/ECE 374, Fall 2020

17.3.8

Dijkstra using priority queues

Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key k(v) such that the following operations:

- makePQ: create an empty queue.
- findMin: find the minimum key in S.
- **9** extractMin: Remove $v \in S$ with smallest key and return it.
- **o** insert(v, k(v)): Add new element v with key k(v) to S.
- **1 delete**(\boldsymbol{v}): Remove element \boldsymbol{v} from \boldsymbol{S} .
- decreaseKey(v, k'(v)): decrease key of v from k(v) (current key) to k'(v) (new key). Assumption: $k'(v) \leq k(v)$.
- meld: merge two separate priority queues into one.

All operations can be performed in $O(\log n)$ time. decreaseKey is implemented via delete and insert.

Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key k(v) such that the following operations:

- makePQ: create an empty queue.
- **1 findMin**: find the minimum key in **5**.
- **o** extractMin: Remove $v \in S$ with smallest key and return it.
- **1** insert(\mathbf{v} , $\mathbf{k}(\mathbf{v})$): Add new element \mathbf{v} with key $\mathbf{k}(\mathbf{v})$ to \mathbf{S} .
- **1** delete(ν): Remove element ν from S.
- decreaseKey(v, k'(v)): decrease key of v from k(v) (current key) to k'(v) (new key). Assumption: $k'(v) \leq k(v)$.
- meld: merge two separate priority queues into one.

All operations can be performed in $O(\log n)$ time. decreaseKey is implemented via delete and insert.

Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key k(v) such that the following operations:

- makePQ: create an empty queue.
- findMin: find the minimum key in S.
- **o** extractMin: Remove $v \in S$ with smallest key and return it.
- **o** insert(v, k(v)): Add new element v with key k(v) to S.
- **1** delete(ν): Remove element ν from S.
- decreaseKey(v, k'(v)): decrease key of v from k(v) (current key) to k'(v) (new key). Assumption: $k'(v) \leq k(v)$.
- meld: merge two separate priority queues into one.

All operations can be performed in $O(\log n)$ time. decreaseKey is implemented via delete and insert.

Dijkstra's Algorithm using Priority Queues

```
Q \leftarrow \mathsf{makePQ}()
insert(Q, (s, 0))
for each node u \neq s do
        insert(Q, (u, \infty))
X \leftarrow \emptyset
for i = 1 to |V| do
        (\mathbf{v}, \operatorname{dist}(\mathbf{s}, \mathbf{v})) = \operatorname{extractMin}(\mathbf{Q})
        X = X \cup \{v\}
        for each u in Adi(v) do
               \mathsf{decreaseKey}ig(m{Q},\,ig(m{u}, \mathsf{min}ig(\mathsf{dist}(m{s},m{u}),\,\,\mathsf{dist}(m{s},m{v}) + \ell(m{v},m{u})ig)ig)ig) .
```

Priority Queue operations:

- 0 O(n) insert operations
- O(n) extractMin operations
- O(m) decrease Key operations

Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value

• All operations can be done in $O(\log n)$ time

Dijkstra's algorithm can be implemented in $O((n + m) \log n)$ time

Implementing Priority Queues via Heaps

Using Heaps

Store elements in a heap based on the key value

• All operations can be done in $O(\log n)$ time

Dijkstra's algorithm can be implemented in $O((n + m) \log n)$ time.

- extractMin, insert, delete, meld in $O(\log n)$ time
- **2** decreaseKey in O(1) amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of meld (not necessary for Dijkstra's algorithm)
- ① Dijkstra's algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
- ② Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps, for example.
- Boost library implements both Fibonacci heaps and rank-pairing heaps.

- extractMin, insert, delete, meld in $O(\log n)$ time
- **2** decreaseKey in O(1) amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- ullet Relaxed Heaps: **decreaseKey** in O(1) worst case time but at the expense of **meld** (not necessary for Dijkstra's algorithm)
- ① Dijkstra's algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
- ② Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps, for example.
- Boost library implements both Fibonacci heaps and rank-pairing heaps.

- extractMin, insert, delete, meld in $O(\log n)$ time
- **2** decreaseKey in O(1) amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- ullet Relaxed Heaps: **decreaseKey** in O(1) worst case time but at the expense of **meld** (not necessary for Dijkstra's algorithm)
- ① Dijkstra's algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
- ② Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps, for example.
- Boost library implements both Fibonacci heaps and rank-pairing heaps.

- extractMin, insert, delete, meld in $O(\log n)$ time
- **2** decreaseKey in O(1) amortized time: ℓ decreaseKey operations for $\ell \geq n$ take together $O(\ell)$ time
- ullet Relaxed Heaps: **decreaseKey** in O(1) worst case time but at the expense of **meld** (not necessary for Dijkstra's algorithm)
- ① Dijkstra's algorithm can be implemented in $O(n \log n + m)$ time. If $m = \Omega(n \log n)$, running time is linear in input size.
- ② Data structures are complicated to analyze/implement. Recent work has obtained data structures that are easier to analyze and implement, and perform well in practice. Rank-Pairing Heaps, for example.
- Soost library implements both Fibonacci heaps and rank-pairing heaps.

THE END

...

(for now)