
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

17.3.8
Dijkstra using priority queues
FLNAME:17.3.8.0 ZZZ:17.3.8.0 Dijkstra using priority queues

61 / 76



Priority Queues
Data structure to store a set S of n elements where each element v ∈ S has an
associated real/integer key k(v) such that the following operations:

1 makePQ: create an empty queue.
2 findMin: find the minimum key in S.
3 extractMin: Remove v ∈ S with smallest key and return it.
4 insert(v, k(v)): Add new element v with key k(v) to S.
5 delete(v): Remove element v from S.
6 decreaseKey(v, k′(v)): decrease key of v from k(v) (current key) to k′(v) (new

key). Assumption: k′(v) ≤ k(v).
7 meld: merge two separate priority queues into one.

All operations can be performed in O(log n) time.
decreaseKey is implemented via delete and insert.

62 / 76



Priority Queues
Data structure to store a set S of n elements where each element v ∈ S has an
associated real/integer key k(v) such that the following operations:

1 makePQ: create an empty queue.
2 findMin: find the minimum key in S.
3 extractMin: Remove v ∈ S with smallest key and return it.
4 insert(v, k(v)): Add new element v with key k(v) to S.
5 delete(v): Remove element v from S.
6 decreaseKey(v, k′(v)): decrease key of v from k(v) (current key) to k′(v) (new

key). Assumption: k′(v) ≤ k(v).
7 meld: merge two separate priority queues into one.

All operations can be performed in O(log n) time.
decreaseKey is implemented via delete and insert.

62 / 76



Priority Queues
Data structure to store a set S of n elements where each element v ∈ S has an
associated real/integer key k(v) such that the following operations:

1 makePQ: create an empty queue.
2 findMin: find the minimum key in S.
3 extractMin: Remove v ∈ S with smallest key and return it.
4 insert(v, k(v)): Add new element v with key k(v) to S.
5 delete(v): Remove element v from S.
6 decreaseKey(v, k′(v)): decrease key of v from k(v) (current key) to k′(v) (new

key). Assumption: k′(v) ≤ k(v).
7 meld: merge two separate priority queues into one.

All operations can be performed in O(log n) time.
decreaseKey is implemented via delete and insert.

62 / 76



Dijkstra’s Algorithm using Priority Queues
Q ← makePQ()
insert(Q, (s, 0))
for each node u 6= s do

insert(Q, (u,∞))
X ← ∅
for i = 1 to |V | do

(v, dist(s, v)) = extractMin(Q)
X = X ∪ {v}
for each u in Adj(v) do

decreaseKey
(

Q,
(
u,min

(
dist(s, u), dist(s, v) + `(v, u)

)))
.

Priority Queue operations:
1 O(n) insert operations
2 O(n) extractMin operations
3 O(m) decreaseKey operations

63 / 76



Implementing Priority Queues via Heaps
Using Heaps
Store elements in a heap based on the key value

1 All operations can be done in O(log n) time

Dijkstra’s algorithm can be implemented in O((n + m) log n) time.

64 / 76



Implementing Priority Queues via Heaps
Using Heaps
Store elements in a heap based on the key value

1 All operations can be done in O(log n) time

Dijkstra’s algorithm can be implemented in O((n + m) log n) time.

64 / 76



Priority Queues: Fibonacci Heaps/Relaxed Heaps
Fibonacci Heaps

1 extractMin, insert, delete, meld in O(log n) time
2 decreaseKey in O(1) amortized time: ` decreaseKey operations for ` ≥ n take

together O(`) time
3 Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of meld

(not necessary for Dijkstra’s algorithm)

1 Dijkstra’s algorithm can be implemented in O(n log n + m) time. If
m = Ω(n log n), running time is linear in input size.

2 Data structures are complicated to analyze/implement. Recent work has obtained
data structures that are easier to analyze and implement, and perform well in
practice. Rank-Pairing Heaps, for example.

3 Boost library implements both Fibonacci heaps and rank-pairing heaps.
65 / 76



Priority Queues: Fibonacci Heaps/Relaxed Heaps
Fibonacci Heaps

1 extractMin, insert, delete, meld in O(log n) time
2 decreaseKey in O(1) amortized time: ` decreaseKey operations for ` ≥ n take

together O(`) time
3 Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of meld

(not necessary for Dijkstra’s algorithm)

1 Dijkstra’s algorithm can be implemented in O(n log n + m) time. If
m = Ω(n log n), running time is linear in input size.

2 Data structures are complicated to analyze/implement. Recent work has obtained
data structures that are easier to analyze and implement, and perform well in
practice. Rank-Pairing Heaps, for example.

3 Boost library implements both Fibonacci heaps and rank-pairing heaps.
65 / 76



Priority Queues: Fibonacci Heaps/Relaxed Heaps
Fibonacci Heaps

1 extractMin, insert, delete, meld in O(log n) time
2 decreaseKey in O(1) amortized time: ` decreaseKey operations for ` ≥ n take

together O(`) time
3 Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of meld

(not necessary for Dijkstra’s algorithm)

1 Dijkstra’s algorithm can be implemented in O(n log n + m) time. If
m = Ω(n log n), running time is linear in input size.

2 Data structures are complicated to analyze/implement. Recent work has obtained
data structures that are easier to analyze and implement, and perform well in
practice. Rank-Pairing Heaps, for example.

3 Boost library implements both Fibonacci heaps and rank-pairing heaps.
65 / 76



Priority Queues: Fibonacci Heaps/Relaxed Heaps
Fibonacci Heaps

1 extractMin, insert, delete, meld in O(log n) time
2 decreaseKey in O(1) amortized time: ` decreaseKey operations for ` ≥ n take

together O(`) time
3 Relaxed Heaps: decreaseKey in O(1) worst case time but at the expense of meld

(not necessary for Dijkstra’s algorithm)

1 Dijkstra’s algorithm can be implemented in O(n log n + m) time. If
m = Ω(n log n), running time is linear in input size.

2 Data structures are complicated to analyze/implement. Recent work has obtained
data structures that are easier to analyze and implement, and perform well in
practice. Rank-Pairing Heaps, for example.

3 Boost library implements both Fibonacci heaps and rank-pairing heaps.
65 / 76



THE END
...

(for now)

66 / 76


