Algorithms & Models of Computation

CS/ECE 374, Fall 2020

17.3.4

On the hereditary nature of shortest paths

You can not shortcut a shortest path

Lemma

G: directed graph with non-negative edge lengths.

dist(s, v): shortest path length from s to v.

If $s = \mathbf{v}_0 \to \mathbf{v}_1 \to \mathbf{v}_2 \to \ldots \to \mathbf{v}_k$ shortest path from s to \mathbf{v}_k then for any

 $0 \le i < j \le k$:

 $\mathbf{v}_i
ightarrow \mathbf{v}_{i+1}
ightarrow \ldots
ightarrow \mathbf{v}_i$ is shortest path from \mathbf{v}_i to \mathbf{v}_j

Proof

Suppose not. Then for some $0 \le i < j \le k$ there is a path P' from v_i to v_j of length strictly less than that of $s = v_i \to v_{i+1} \to \ldots \to v_j$. Then the path

$$s = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_i \bullet P' \bullet v_j \rightarrow v_{j+1} \rightarrow \cdots \rightarrow v_k$$

is a strictly shorter path from s to v_k than $s = v_0 \rightarrow v_1 \ldots \rightarrow v_k$.

You can not shortcut a shortest path

Lemma

G: directed graph with non-negative edge lengths.

dist(s, v): shortest path length from s to v.

If $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k$ shortest path from s to v_k then for any 0 < i < j < k:

 $\mathbf{v}_i
ightarrow \mathbf{v}_{i+1}
ightarrow \ldots
ightarrow \mathbf{v}_i$ is shortest path from \mathbf{v}_i to \mathbf{v}_j

Proof.

Suppose not. Then for some $0 \le i < j \le k$ there is a path P' from v_i to v_j of length strictly less than that of $s = v_i \to v_{i+1} \to \ldots \to v_j$. Then the path

$$s = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_i \bullet P' \bullet v_i \rightarrow v_{i+1} \rightarrow \cdots \rightarrow v_k$$

is a strictly shorter path from s to v_k than $s = v_0 \rightarrow v_1 \dots \rightarrow v_k$.

A proof by picture

A proof by picture

A proof by picture

What we really need...

Corollary

G: directed graph with non-negative edge lengths.

dist(s, v): shortest path length from s to v.

If $s= extbf{v}_0 o extbf{v}_1 o extbf{v}_2 o \ldots o extbf{v}_k$ shortest path from s to $extbf{v}_k$ then for any

- $0 \le i \le k$:
 - $lackbox{0} \quad s = m{v}_0
 ightarrow m{v}_1
 ightarrow m{v}_2
 ightarrow \ldots
 ightarrow m{v}_i$ is shortest path from s to $m{v}_i$
 - \bigcirc dist $(s, v_i) \le \text{dist}(s, v_k)$. Relies on non-neg edge lengths.

THE END

...

(for now)