Algorithms & Models of Computation

CS/ECE 374, Fall 2020

17.3

Shortest Paths and Dijkstra's Algorithm

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

17.3.1

Problem definition

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths (or costs). For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- ② Given node s find shortest path from s to all other nodes.
- Find shortest paths for all pairs of nodes.

Many applications!

Shortest Path Problems

Shortest Path Problems

Input A (undirected or directed) graph G = (V, E) with edge lengths (or costs). For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.

- Given nodes s, t find shortest path from s to t.
- ② Given node s find shortest path from s to all other nodes.
- Find shortest paths for all pairs of nodes.

Many applications!

Single-Source Shortest Paths:

Non-Negative Edge Lengths

- Single-Source Shortest Path Problems
 - Input: A (undirected or directed) graph G = (V, E) with non-negative edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.
 - ② Given nodes s, t find shortest path from s to t.
 - $oldsymbol{\circ}$ Given node $oldsymbol{s}$ find shortest path from $oldsymbol{s}$ to all other nodes.
- - Undirected graph problem can be reduced to directed graph problem how?
 - ① Given undirected graph G, create a new directed graph G' by replacing each edge $\{u, v\}$ in G by (u, v) and (v, u) in G'.
 - ② set $\ell(u, v) = \ell(v, u) = \ell(\{u, v\})$
 - Second Exercise: show reduction works. Relies on non-negativity!

Single-Source Shortest Paths:

Non-Negative Edge Lengths

- Single-Source Shortest Path Problems
 - Input: A (undirected or directed) graph G = (V, E) with non-negative edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.
 - ② Given nodes s, t find shortest path from s to t.
 - **3** Given node s find shortest path from s to all other nodes.
- Restrict attention to directed graphs
 - Undirected graph problem can be reduced to directed graph problem how?
 - ① Given undirected graph G, create a new directed graph G' by replacing each edge $\{u, v\}$ in G by (u, v) and (v, u) in G'.

 - Second Exercise: show reduction works. Relies on non-negativity!

Single-Source Shortest Paths:

Non-Negative Edge Lengths

- Single-Source Shortest Path Problems
 - Input: A (undirected or directed) graph G = (V, E) with non-negative edge lengths. For edge e = (u, v), $\ell(e) = \ell(u, v)$ is its length.
 - ② Given nodes s, t find shortest path from s to t.
 - **3** Given node s find shortest path from s to all other nodes.
- Restrict attention to directed graphs
 - Undirected graph problem can be reduced to directed graph problem how?
 - Given undirected graph G, create a new directed graph G' by replacing each edge $\{u, v\}$ in G by (u, v) and (v, u) in G'.
 - **2** set $\ell(u, v) = \ell(v, u) = \ell(\{u, v\})$
 - Sercise: show reduction works. Relies on non-negativity!

THE END

...

(for now)