Algorithms & Models of Computation

CS/ECE 374, Fall 2020

16.6

Linear time algorithm for finding all strong connected components of a directed graph

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

16.6.1

Wishful thinking linear-time SCC algorithm

SCC

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output all its strong connected components.

Straightforward algorithm

```
Mark all vertices in V as not visited.

for each vertex u \in V not visited yet do

find SCC(G, u) the strong component of u:

Compute rch(G, u) using DFS(G, u)

Compute rch(G^{rev}, u) using DFS(G^{rev}, u)

SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev}, u)

\forall u \in SCC(G, u): Mark u as visited.
```

```
Running time: O(n(n+m)) is there an O(n+m) time algorithm?
```

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output all its strong connected components.

Straightforward algorithm:

```
Mark all vertices in V as not visited.

for each vertex u \in V not visited yet do

find SCC(G, u) the strong component of u:

Compute rch(G, u) using DFS(G, u)

Compute rch(G^{rev}, u) using DFS(G^{rev}, u)

SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev}, u)

\forall u \in SCC(G, u): Mark u as visited.
```

Running time: O(n(n+m))

Is there an $oldsymbol{O}(oldsymbol{n}+oldsymbol{m})$ time algorithm?

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output all its strong connected components.

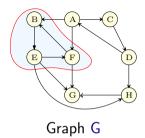
Straightforward algorithm:

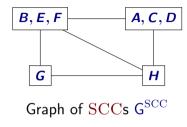
```
Mark all vertices in V as not visited.

for each vertex u \in V not visited yet do

find \mathrm{SCC}(G,u) the strong component of u:

Compute \mathrm{rch}(G,u) using \mathrm{DFS}(G,u)


Compute \mathrm{rch}(G^{\mathrm{rev}},u) using \mathrm{DFS}(G^{\mathrm{rev}},u)


\mathrm{SCC}(G,u) \Leftarrow \mathrm{rch}(G,u) \cap \mathrm{rch}(G^{\mathrm{rev}},u)

\forall u \in \mathrm{SCC}(G,u): Mark u as visited.
```

Running time: O(n(n+m))Is there an O(n+m) time algorithm?

Structure of a Directed Graph

Reminder

 $\mathsf{G}^{\mathrm{SCC}}$ is created by collapsing every strong connected component to a single vertex.

Proposition

For a directed graph G, its meta-graph G^{SCC} is a DAG.

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- ② Do DFS(u) to compute SCC(u)
- 3 Remove SCC(u) and repeat

- **OPPOSITION DFS**(u) only visits vertices (and edges) in SCC(u)
- 2
- 3
- 24

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- ② Do DFS(u) to compute SCC(u)
- 3 Remove SCC(u) and repeat

- **1 DFS**(u) only visits vertices (and edges) in SCC(u)
- 2
- 3
- 74

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- ② Do DFS(u) to compute SCC(u)
- 3 Remove SCC(u) and repeat

- **OPPOS** DFS(u) only visits vertices (and edges) in SCC(u)
- 2 ... since there are no edges coming out a sink!
- 3
- 4

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- ② Do DFS(u) to compute SCC(u)
- 3 Remove SCC(u) and repeat

- **1 DFS**(u) only visits vertices (and edges) in SCC(u)
- 2 ... since there are no edges coming out a sink!
- **3 DFS**(u) takes time proportional to size of SCC(u)
- 4

Exploit structure of meta-graph...

Wishful Thinking Algorithm

- Let u be a vertex in a sink SCC of G^{SCC}
- ② Do DFS(u) to compute SCC(u)
- 3 Remove SCC(u) and repeat

- **OPPS**(u) only visits vertices (and edges) in SCC(u)
- … since there are no edges coming out a sink!
- **3 DFS**(u) takes time proportional to size of SCC(u)
- Therefore, total time O(n + m)!

Big Challenge(s)

How do we find a vertex in a sink SCC of GSCC?

Can we obtain an implicit topological sort of GSCC without computing GSCC?

Answer: DFS(G) gives some information!

Big Challenge(s)

How do we find a vertex in a sink SCC of G^{SCC} ?

Can we obtain an implicit topological sort of G^{SCC} without computing G^{SCC}?

Answer: DFS(G) gives some information!

Big Challenge(s)

How do we find a vertex in a sink SCC of G^{SCC} ?

Can we obtain an implicit topological sort of G^{SCC} without computing G^{SCC}?

Answer: DFS(G) gives some information!

THE END

. . .

(for now)