Algorithms & Models of Computation

CS/ECE 374, Fall 2020

16.4.2

DFS and cycle detection: Topological sorting using DFS

DFS

Cycles in graphs

Question: Given an <u>undirected</u> graph how do we check whether it has a cycle and output one if it has one?

Question: Given an directed graph how do we check whether it has a cycle and output one if it has one?

Cycles in graphs

Question: Given an <u>undirected</u> graph how do we check whether it has a cycle and output one if it has one?

Question: Given an <u>directed</u> graph how do we check whether it has a cycle and output one if it has one?

Cycle detection in directed graph using topological sorting

Question

Given G, is it a DAG?

If it is, compute a topological sort. If it failes, then output the cycle C.

Topological sort a graph using DFS...

And detect a cycle in the propcesss

DFS based algorithm:

- Compute DFS(G)
- ② If there is a back edge e = (v, u) then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort, DFS(G) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n + m) time.

Correctness is not so obvious. See next two propositions

Topological sort a graph using DFS...

And detect a cycle in the propcesss

DFS based algorithm:

- Compute DFS(G)
- ② If there is a back edge e = (v, u) then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- **3** Otherwise output nodes in decreasing post-visit order. Note: no need to sort, DFS(G) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n + m) time.

Correctness is not so obvious. See next two propositions.

Topological sort a graph using DFS...

And detect a cycle in the propcesss

DFS based algorithm:

- Compute DFS(G)
- ② If there is a back edge e = (v, u) then G is not a DAG. Output cycle C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort, DFS(G) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n + m) time.

Correctness is not so obvious. See next two propositions.

Back edge and Cycles

Proposition

G has a cycle \iff there is a back-edge in **DFS**(G).

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in **DFS** search tree and the edge (u, v).

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1$.

Let v_i be first node in C visited in DFS.

All other nodes in C are descendants of v_i since they are reachable from v_i .

Therefore, (v_{i-1}, v_i) (or (v_k, v_1) if i = 1) is a back edge.

Decreasing post numbering is valid

Proposition

If G is a DAG and post(v) > post(u), then ($u \rightarrow v$) is not in G.

Proof.

Assume post(u) < post(v) and $(u \rightarrow v)$ is an edge in G. One of two holds:

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].

Decreasing post numbering is valid

Proposition

If G is a DAG and post(v) > post(u), then ($u \rightarrow v$) is not in G.

Proof.

Assume post(u) < post(v) and $(u \rightarrow v)$ is an edge in G. One of two holds:

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].

Decreasing post numbering is valid

Proposition

If G is a DAG and post(v) > post(u), then ($u \rightarrow v$) is not in G.

Proof.

Assume post(u) < post(v) and $(u \rightarrow v)$ is an edge in G. One of two holds:

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)]. Implies that u is explored during DFS(v) and hence is a descendent of v. Edge (u, v) implies a cycle in G but G is assumed to be DAG!
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)]. This cannot happen since v would be explored from u.

Translation

We just proved:

Proposition

If G is a DAG and post(v) > post(u), then ($u \rightarrow v$) is not in G.

⇒ sort the vertices of a DAG by decreasing post nubmering in decreasing order, then this numbering is valid.

Topological sorting

Theorem

G = (V, E): Graph with n vertices and m edges.

Comptue a topological sorting of G using DFS in O(n + m) time.

That is, compute a numbering $\pi: V \to \{1, 2, \ldots, n\}$, such that

$$(u \to v) \in E(G) \implies \pi(u) < \pi(v).$$

Example

THE END

. . .

(for now)