
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

16.4.2
DFS and cycle detection:
Topological sorting using DFS
FLNAME:16.4.2.0 ZZZ:16.4.2.0 DFS and cycle detection:

Topological sorting using DFS

50 / 1



Cycles in graphs

Question: Given an undirected graph how do we check whether it has a cycle and
output one if it has one?

Question: Given an directed graph how do we check whether it has a cycle and output
one if it has one?

51 / 1



Cycles in graphs

Question: Given an undirected graph how do we check whether it has a cycle and
output one if it has one?

Question: Given an directed graph how do we check whether it has a cycle and output
one if it has one?

51 / 1



Cycle detection in directed graph using topological sorting

Question
Given G, is it a DAG?

If it is, compute a topological sort.
If it failes, then output the cycle C .

52 / 1



Topological sort a graph using DFS...
And detect a cycle in the propcesss

DFS based algorithm:

1 Compute DFS(G )

2 If there is a back edge e = (v , u) then G is not a DAG. Output cycle C formed
by path from u to v in T plus edge (v , u).

3 Otherwise output nodes in decreasing post-visit order. Note: no need to sort,
DFS(G ) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n + m) time.
Correctness is not so obvious. See next two propositions.

53 / 1



Topological sort a graph using DFS...
And detect a cycle in the propcesss

DFS based algorithm:

1 Compute DFS(G )

2 If there is a back edge e = (v , u) then G is not a DAG. Output cycle C formed
by path from u to v in T plus edge (v , u).

3 Otherwise output nodes in decreasing post-visit order. Note: no need to sort,
DFS(G ) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n + m) time.
Correctness is not so obvious. See next two propositions.

53 / 1



Topological sort a graph using DFS...
And detect a cycle in the propcesss

DFS based algorithm:

1 Compute DFS(G )

2 If there is a back edge e = (v , u) then G is not a DAG. Output cycle C formed
by path from u to v in T plus edge (v , u).

3 Otherwise output nodes in decreasing post-visit order. Note: no need to sort,
DFS(G ) can output nodes in this order.

Computes topological ordering of the vertices.

Algorithm runs in O(n + m) time.
Correctness is not so obvious. See next two propositions.

53 / 1



Back edge and Cycles

Proposition

G has a cycle ⇐⇒ there is a back-edge in DFS(G ).

Proof.
If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in
DFS search tree and the edge (u, v).

Only if: Suppose there is a cycle C = v1 → v2 → . . .→ vk → v1.
Let vi be first node in C visited in DFS.
All other nodes in C are descendants of vi since they are reachable from vi .
Therefore, (vi−1, vi ) (or (vk , v1) if i = 1) is a back edge.

54 / 1



Decreasing post numbering is valid

Proposition

If G is a DAG and post(v) > post(u), then (u → v) is not in G.

Proof.
Assume post(u) < post(v) and (u → v) is an edge in G . One of two holds:

Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].

Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].

55 / 1



Decreasing post numbering is valid

Proposition

If G is a DAG and post(v) > post(u), then (u → v) is not in G.

Proof.
Assume post(u) < post(v) and (u → v) is an edge in G . One of two holds:

Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)].

Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)].

55 / 1



Decreasing post numbering is valid

Proposition

If G is a DAG and post(v) > post(u), then (u → v) is not in G.

Proof.
Assume post(u) < post(v) and (u → v) is an edge in G . One of two holds:

Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)]. Implies that u is
explored during DFS(v) and hence is a descendent of v . Edge (u, v) implies a
cycle in G but G is assumed to be DAG!

Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)]. This cannot
happen since v would be explored from u.

55 / 1



Translation

We just proved:

Proposition

If G is a DAG and post(v) > post(u), then (u → v) is not in G.

=⇒ sort the vertices of a DAG by decreasing post nubmering in decreasing order,
then this numbering is valid.

56 / 1



Topological sorting

Theorem
G = (V ,E ): Graph with n vertices and m edges.
Comptue a topological sorting of G using DFS in O(n + m) time.
That is, compute a numbering π : V → {1, 2, . . . , n}, such that

(u → v) ∈ E (G) =⇒ π(u) < π(v).

57 / 1



Example

a b c

d e

f g

h

58 / 1



THE END
...

(for now)

59 / 1


