
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

16.4
DFS in Directed Graphs
FLNAME:16.4.0.0 ZZZ:16.4.0.0 DFS in Directed Graphs

42 / 1



Algorithms & Models of Computation
CS/ECE 374, Fall 2020

16.4.1
DFS in Directed Graphs: Pre/Post
numbering
FLNAME:16.4.1.0 ZZZ:16.4.1.0 DFS in Directed Graphs: Pre/Post numbering

43 / 1



DFS in Directed Graphs

DFS(G )
Mark all nodes u as unvisited

T is set to ∅
time = 0
while there is an unvisited node u do

DFS(u)
Output T

DFS(u)
Mark u as visited

pre(u) = ++time
for each edge (u, v) in Out(u) do

if v is not visited

add edge (u, v) to T
DFS(v)

post(u) = ++time

44 / 1



Example of DFS in directed graph

AB C

DE F

G H

45 / 1



Example of DFS in directed graph

AB C

DE F

G H

[1, 16]

[2, 11] [12, 15]

[13, 14]

[3, 10]

[6, 7]

[4, 5]

[8, 9]

AB C

DE F

G H

45 / 1



DFS Properties

Generalizing ideas from undirected graphs:

1 DFS(G ) takes O(m + n) time.

2 Edges added form a branching: a forest of out-trees. Output of DFS(G ) depends
on the order in which vertices are considered.

3 If u is the first vertex considered by DFS(G ) then DFS(u) outputs a directed
out-tree T rooted at u and a vertex v is in T if and only if v ∈ rch(u)

4 For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are
either disjoint or one is contained in the other.

Note: Not obvious whether DFS(G ) is useful in directed graphs but it is.

46 / 1



DFS Properties

Generalizing ideas from undirected graphs:

1 DFS(G ) takes O(m + n) time.

2 Edges added form a branching: a forest of out-trees. Output of DFS(G ) depends
on the order in which vertices are considered.

3 If u is the first vertex considered by DFS(G ) then DFS(u) outputs a directed
out-tree T rooted at u and a vertex v is in T if and only if v ∈ rch(u)

4 For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are
either disjoint or one is contained in the other.

Note: Not obvious whether DFS(G ) is useful in directed graphs but it is.

46 / 1



DFS Properties

Generalizing ideas from undirected graphs:

1 DFS(G ) takes O(m + n) time.

2 Edges added form a branching: a forest of out-trees. Output of DFS(G ) depends
on the order in which vertices are considered.

3 If u is the first vertex considered by DFS(G ) then DFS(u) outputs a directed
out-tree T rooted at u and a vertex v is in T if and only if v ∈ rch(u)

4 For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are
either disjoint or one is contained in the other.

Note: Not obvious whether DFS(G ) is useful in directed graphs but it is.

46 / 1



DFS Properties

Generalizing ideas from undirected graphs:

1 DFS(G ) takes O(m + n) time.

2 Edges added form a branching: a forest of out-trees. Output of DFS(G ) depends
on the order in which vertices are considered.

3 If u is the first vertex considered by DFS(G ) then DFS(u) outputs a directed
out-tree T rooted at u and a vertex v is in T if and only if v ∈ rch(u)

4 For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are
either disjoint or one is contained in the other.

Note: Not obvious whether DFS(G ) is useful in directed graphs but it is.

46 / 1



DFS Properties

Generalizing ideas from undirected graphs:

1 DFS(G ) takes O(m + n) time.

2 Edges added form a branching: a forest of out-trees. Output of DFS(G ) depends
on the order in which vertices are considered.

3 If u is the first vertex considered by DFS(G ) then DFS(u) outputs a directed
out-tree T rooted at u and a vertex v is in T if and only if v ∈ rch(u)

4 For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are
either disjoint or one is contained in the other.

Note: Not obvious whether DFS(G ) is useful in directed graphs but it is.

46 / 1



DFS tree and related edges

Edges of G can be classified with respect to the DFS
tree T as:

1 Tree edges that belong to T
2 A forward edge is a non-tree edges (x, y) such

that pre(x) < pre(y) < post(y) < post(x).

3 A backward edge is a non-tree edge (y , x)
such that
pre(x) < pre(y) < post(y) < post(x).

4 A cross edge is a non-tree edges (x, y) such
that the intervals [pre(x), post(x)] and
[pre(y), post(y)] are disjoint.

A

C D
Cross

Forward
Backward

B

47 / 1



Types of Edges
[1, 16]

[2, 11] [12, 15]

[13, 14]

[3, 10]

[6, 7]

[4, 5]

[8, 9]

AB C

DE F

G H

48 / 1



THE END
...

(for now)

49 / 1


