Algorithms & Models of Computation

CS/ECE 374, Fall 2020

16.3.2

DFS with pre-post numbering

DFS

DFS with Visit Times

Keep track of when nodes are visited.

```
\begin{array}{c} \mathsf{DFS}(G) \\ \quad \mathsf{for \ all} \ \ u \in V(G) \ \ \mathsf{do} \\ \quad \quad \mathsf{Mark} \ \ u \ \ \mathsf{as} \ \ \mathsf{unvisited} \\ \boldsymbol{T} \ \ \mathsf{is \ set} \ \ \mathsf{to} \ \emptyset \\ \boldsymbol{\mathit{time}} = 0 \\ \quad \mathsf{while} \ \exists \ \mathsf{unvisited} \ \ \boldsymbol{\mathit{u}} \ \ \mathsf{do} \\ \quad \quad \quad \quad \quad \quad \quad \mathsf{DFS}(u) \\ \mathsf{Output} \ \ \boldsymbol{\mathit{T}} \end{array}
```

```
DFS(u)
    Mark u as visited
    pre(u) = ++time
    for each uv in Out(u) do
        if v is not marked then
            add edge uv to T
            DFS(v)
    post(u) = ++time
```


vertex	[pre, post]
1	[1,]
2	[2,]

time = 2 vertex |[pre, post]|1 [1,]

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5,]
	l

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
	l

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8,]
	' -

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8,]
8	[9,]

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8,]
8	[9, 10]
	_ -

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7,]
7	[8, 11]
8	[9, 10]
	_ •

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4,]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3,]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]

vertex	[pre, post]
1	[1,]
2	[2,]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]

vertex	[pre, post]
1	[1,]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]

vertex	[pre, post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]

vertex	[pre, post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]
9	[17,]

vertex	[pre, post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]
9	[17,]
10	[18,]

vertex	[pre, post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]
9	[17,]
10	[18, 19]

vertex	[pre, post]
1	[1, 16]
2	[2, 15]
4	[3, 14]
5	[4, 13]
6	[5, 6]
3	[7, 12]
7	[8, 11]
8	[9, 10]
9	[17, 20]
10	[18, 19]

Node u is <u>active</u> in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If $\mathsf{DFS}(v)$ invoked before $\mathsf{DFS}(u)$ finished, $\mathsf{post}(v) < \mathsf{post}(u)$.
- If $\mathsf{DFS}(v)$ invoked after $\mathsf{DFS}(u)$ finished, $\mathsf{pre}(v) > \mathsf{post}(u)$.

pre and post numbers useful in several applications of DFS

Node u is <u>active</u> in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If $\mathsf{DFS}(v)$ invoked before $\mathsf{DFS}(u)$ finished, $\mathsf{post}(v) < \mathsf{post}(u)$.
- If $\mathsf{DFS}(v)$ invoked after $\mathsf{DFS}(u)$ finished, $\mathsf{pre}(v) > \mathsf{post}(u)$.

 ${f pre}$ and ${f post}$ numbers useful in several applications of ${f DFS}$

Node u is <u>active</u> in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If $\mathsf{DFS}(v)$ invoked before $\mathsf{DFS}(u)$ finished, $\mathsf{post}(v) < \mathsf{post}(u)$.
- If $\mathsf{DFS}(v)$ invoked after $\mathsf{DFS}(u)$ finished, $\mathsf{pre}(v) > \mathsf{post}(u)$.

pre and post numbers useful in several applications of DFS

Node u is <u>active</u> in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If $\mathsf{DFS}(v)$ invoked before $\mathsf{DFS}(u)$ finished, $\mathsf{post}(v) < \mathsf{post}(u)$.
- If $\mathsf{DFS}(v)$ invoked after $\mathsf{DFS}(u)$ finished, $\mathsf{pre}(v) > \mathsf{post}(u)$.

 ${f pre}$ and ${f post}$ numbers useful in several applications of ${f DFS}$

Node u is <u>active</u> in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If $\mathsf{DFS}(v)$ invoked before $\mathsf{DFS}(u)$ finished, $\mathsf{post}(v) < \mathsf{post}(u)$.
- If $\mathsf{DFS}(v)$ invoked after $\mathsf{DFS}(u)$ finished, $\mathsf{pre}(v) > \mathsf{post}(u)$.

 ${f pre}$ and ${f post}$ numbers useful in several applications of ${f DFS}$

Node u is <u>active</u> in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If $\mathsf{DFS}(v)$ invoked before $\mathsf{DFS}(u)$ finished, $\mathsf{post}(v) < \mathsf{post}(u)$.
- If $\mathsf{DFS}(v)$ invoked after $\mathsf{DFS}(u)$ finished, $\mathsf{pre}(v) > \mathsf{post}(u)$.

pre and post numbers useful in several applications of DFS

THE END

...

(for now)