### Algorithms & Models of Computation

CS/ECE 374, Fall 2020

## 16.2.2

# Topological ordering

#### Total recall: Order on a set

<u>Order</u> or <u>strict total order</u> on a set X is a binary relation  $\prec$  on X, such that

- e For any  $x, y \in X$ , exactly one of the following holds:  $x \prec y$ ,  $y \prec x$  or x = y.

Cannot have  $x_1, \ldots, x_m \in X$ , such that  $x_1 \prec X_2, \ldots, x_{m-1} \prec x_m, x_m \prec x_1$ , because...

Order on a (finite) set X: listing the elements of X from smallest to largest.

#### Total recall: Order on a set

Order or strict total order on a set X is a binary relation  $\prec$  on X, such that

- ② For any  $x, y \in X$ , exactly one of the following holds:  $x \prec y$ ,  $y \prec x$  or x = y.

Cannot have  $x_1, \ldots, x_m \in X$ , such that  $x_1 \prec X_2, \ldots, x_{m-1} \prec x_m, x_m \prec x_1$ , because...

Order on a (finite) set X: listing the elements of X from smallest to largest.

#### Total recall: Order on a set

Order or strict total order on a set X is a binary relation  $\prec$  on X, such that

- **1** Transitivity:  $\forall x.y, z \in X$   $x \prec y$  and  $y \prec z \implies x \prec z$ .
- ② For any  $x, y \in X$ , exactly one of the following holds:  $x \prec y$ ,  $y \prec x$  or x = y.

Cannot have  $x_1, \ldots, x_m \in X$ , such that  $x_1 \prec X_2, \ldots, x_{m-1} \prec x_m, x_m \prec x_1$ , because...

Order on a (finite) set X: listing the elements of X from smallest to largest.

### Convention about writing edges

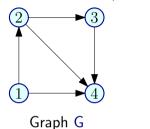
Undirected graph edges:

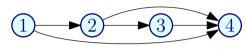
$$uv = \{u, v\} = vu \in E$$

② Directed graph edges:

$$u \rightarrow v \equiv (u, v) \equiv (u \rightarrow v)$$

### Topological Ordering/Sorting





Topological Ordering of G

#### **Definition**

A <u>topological ordering</u>/<u>topological sorting</u> of G = (V, E) is an ordering  $\prec$  on V such that if  $(u \rightarrow v) \in E$  then  $u \prec v$ .

#### Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

#### Lemma

A directed graph G can be topologically ordered  $\iff$  G is a DAG.

Need to show both directions.

#### Lemma

A directed graph G is a  $DAG \implies G$  can be topologically ordered.

#### Proof.

Consider the following algorithm:

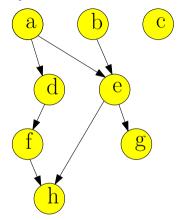
- Pick a source **u**, output it.
- 2 Remove u and all edges out of u.
- Repeat until graph is empty.

Exercise: prove this gives topological sort.

### Topological ordering in linear time

Exercise: show algorithm can be implemented in O(m + n) time.

### Topological Sort: Example



#### Lemma

A directed graph G can be topologically ordered  $\implies$  G is a DAG.

#### Proof.

Proof by contradiction. Suppose G is not a  $\overline{DAG}$  and has a topological ordering  $\prec$ . G has a cycle

$$C = u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_k \rightarrow u_1$$
.

Then  $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1$ 

$$\implies u_1 \prec u_1$$
.

A contradiction (to  $\prec$  being an order). Not possible to topologically order the vertices.

#### Lemma

A directed graph G can be topologically ordered  $\implies$  G is a DAG.

#### Proof.

Proof by contradiction. Suppose G is not a  $\overline{DAG}$  and has a topological ordering  $\prec$ . G has a cycle

$$C = u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_k \rightarrow u_1$$
.

Then  $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1$ 

$$\implies u_1 \prec u_1$$
.

A contradiction (to  $\prec$  being an order). Not possible to topologically order the vertices.



### Regular sorting and DAGs

• Note: A DAG G may have many different topological sorts.

- Exercise: What is a DAG with the most number of distinct topological sorts for a given number n of vertices?
- Exercise: What is a DAG with the least number of distinct topological sorts for a given number n of vertices?

# THE END

...

(for now)