
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

15.5
Algorithms via Basic Search
FLNAME:15.5.0.0

58 / 73



Algorithms via Basic Search - I

1 Given G and nodes u and v , can u reach v?

2 Given G and u, compute rch(u).

Use Explore(G , u) to compute rch(u) in O(n + m) time.

59 / 73



Algorithms via Basic Search - II

1 Given G and u, compute all v that can reach u, that is all v such that
u ∈ rch(v). Naive: O(n(n + m))

Definition (Reverse graph.)

Given G = (V ,E ), G rev is the graph with edge directions reversed
G rev = (V ,E ′) where E ′ = {(y , x) | (x, y) ∈ E}

Compute rch(u) in G rev !

1 Correctness: exercise

2 Running time: O(n + m) to obtain G rev from G and O(n + m) time to compute
rch(u) via Basic Search. If both Out(v) and In(v) are available at each v then
no need to explicitly compute G rev . Can do Explore(G , u) in G rev implicitly.

60 / 73



Algorithms via Basic Search - II

1 Given G and u, compute all v that can reach u, that is all v such that
u ∈ rch(v). Naive: O(n(n + m))

Definition (Reverse graph.)

Given G = (V ,E ), G rev is the graph with edge directions reversed
G rev = (V ,E ′) where E ′ = {(y , x) | (x, y) ∈ E}

Compute rch(u) in G rev !

1 Correctness: exercise

2 Running time: O(n + m) to obtain G rev from G and O(n + m) time to compute
rch(u) via Basic Search. If both Out(v) and In(v) are available at each v then
no need to explicitly compute G rev . Can do Explore(G , u) in G rev implicitly.

60 / 73



Algorithms via Basic Search - II

1 Given G and u, compute all v that can reach u, that is all v such that
u ∈ rch(v). Naive: O(n(n + m))

Definition (Reverse graph.)

Given G = (V ,E ), G rev is the graph with edge directions reversed
G rev = (V ,E ′) where E ′ = {(y , x) | (x, y) ∈ E}

Compute rch(u) in G rev !

1 Correctness: exercise

2 Running time: O(n + m) to obtain G rev from G and O(n + m) time to compute
rch(u) via Basic Search. If both Out(v) and In(v) are available at each v then
no need to explicitly compute G rev . Can do Explore(G , u) in G rev implicitly.

60 / 73



Algorithms via Basic Search - II

1 Given G and u, compute all v that can reach u, that is all v such that
u ∈ rch(v). Naive: O(n(n + m))

Definition (Reverse graph.)

Given G = (V ,E ), G rev is the graph with edge directions reversed
G rev = (V ,E ′) where E ′ = {(y , x) | (x, y) ∈ E}

Compute rch(u) in G rev !

1 Correctness: exercise

2 Running time: O(n + m) to obtain G rev from G and O(n + m) time to compute
rch(u) via Basic Search. If both Out(v) and In(v) are available at each v then
no need to explicitly compute G rev . Can do Explore(G , u) in G rev implicitly.

60 / 73



Algorithms via Basic Search - III

SCC(G , u) = {v | u is strongly connected to v}
1 Find the strongly connected component containing node u. That is, compute

SCC(G , u).

SCC(G , u) = rch(G , u) ∩ rch(G rev , u)

Hence, SCC(G , u) can be computed with Explore(G , u) and Explore(G rev , u).
Total O(n + m) time.

Why can rch(G , u) ∩ rch(G rev , u) be done in O(n) time?

61 / 73



Algorithms via Basic Search - III

SCC(G , u) = {v | u is strongly connected to v}
1 Find the strongly connected component containing node u. That is, compute

SCC(G , u).

SCC(G , u) = rch(G , u) ∩ rch(G rev , u)

Hence, SCC(G , u) can be computed with Explore(G , u) and Explore(G rev , u).
Total O(n + m) time.

Why can rch(G , u) ∩ rch(G rev , u) be done in O(n) time?

61 / 73



Algorithms via Basic Search - III

SCC(G , u) = {v | u is strongly connected to v}
1 Find the strongly connected component containing node u. That is, compute

SCC(G , u).

SCC(G , u) = rch(G , u) ∩ rch(G rev , u)

Hence, SCC(G , u) can be computed with Explore(G , u) and Explore(G rev , u).
Total O(n + m) time.

Why can rch(G , u) ∩ rch(G rev , u) be done in O(n) time?

61 / 73



Algorithms via Basic Search - III

SCC(G , u) = {v | u is strongly connected to v}
1 Find the strongly connected component containing node u. That is, compute

SCC(G , u).

SCC(G , u) = rch(G , u) ∩ rch(G rev , u)

Hence, SCC(G , u) can be computed with Explore(G , u) and Explore(G rev , u).
Total O(n + m) time.

Why can rch(G , u) ∩ rch(G rev , u) be done in O(n) time?

61 / 73



SCC I: Graph G and its reverse graph Grev

AB C

DE F

G H

Graph G

AB C

DE F

G H

Reverse graph Grev

62 / 73



SCC II: Graph G a vertex F
.. and its reachable set rch(G, F)

AB C

DE F

G H

Graph G

AB C

DE F

G H

Reachable set of vertices from F

63 / 73



SCC III: Graph G a vertex F
.. and the set of vertices that can reach it in G: rch(Grev, F)

AB C

DE F

G H

Graph G

AB C

DE F

G H

Set of vertices that can reach F ,
computed via DFS in the reverse graph

G rev.

64 / 73



SCC IV: Graph G a vertex F and...
its strong connected component in G: SCC(G, F)

AB C

DE F

G H

Graph G

AB C

DE F

G H

rch(G,F )

AB C

DE F

G H

rch(Grev,F )

AB C

DE F

G H

SCC(G,F )
= rch(G,F ) ∩ rch(Grev,F )

65 / 73



Algorithms via Basic Search - IV

1 Is G strongly connected?

Pick arbitrary vertex u. Check if SCC(G , u) = V .

66 / 73



Algorithms via Basic Search - IV

1 Is G strongly connected?

Pick arbitrary vertex u. Check if SCC(G , u) = V .

66 / 73



Algorithms via Basic Search - V

1 Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u
find S = SCC(G , u)
Remove S from G

Question: Why doesn’t removing one strong connected components affect the other
strong connected components?

Running time: O(n(n + m)).

Question: Can we do it in O(n + m) time?

67 / 73



Algorithms via Basic Search - V

1 Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u
find S = SCC(G , u)
Remove S from G

Question: Why doesn’t removing one strong connected components affect the other
strong connected components?

Running time: O(n(n + m)).

Question: Can we do it in O(n + m) time?

67 / 73



Algorithms via Basic Search - V

1 Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u
find S = SCC(G , u)
Remove S from G

Question: Why doesn’t removing one strong connected components affect the other
strong connected components?

Running time: O(n(n + m)).

Question: Can we do it in O(n + m) time?

67 / 73



Algorithms via Basic Search - V

1 Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u
find S = SCC(G , u)
Remove S from G

Question: Why doesn’t removing one strong connected components affect the other
strong connected components?

Running time: O(n(n + m)).

Question: Can we do it in O(n + m) time?

67 / 73



Algorithms via Basic Search - V

1 Find all strongly connected components of G .

While G is not empty do

Pick arbitrary node u
find S = SCC(G , u)
Remove S from G

Question: Why doesn’t removing one strong connected components affect the other
strong connected components?

Running time: O(n(n + m)).

Question: Can we do it in O(n + m) time?

67 / 73



THE END
...

(for now)

68 / 73


