Algorithms & Models of Computation

CS/ECE 374, Fall 2020

15.4

Directed Graphs and Decomposition

Directed Graphs

Definition

A directed graph G = (V, E) consists of

- set of vertices/nodes V and
- ② a set of edges/arcs $E \subseteq V \times V$.

An edge is an ordered pair of vertices. (u, v) different from (v, u).

Examples of Directed Graphs

In many situations relationship between vertices is asymmetric:

- Road networks with one-way streets.
- ② Web-link graph: vertices are web-pages and there is an edge from page p to page p' if p has a link to p'. Web graphs used by Google with PageRank algorithm to rank pages.
- Opendency graphs in variety of applications: link from x to y if y depends on x. Make files for compiling programs.
- Program Analysis: functions/procedures are vertices and there is an edge from x to y if x calls y.

Directed Graph Representation

Graph G = (V, E) with n vertices and m edges:

- **4** Adjacency Matrix: $n \times n$ asymmetric matrix A. A[u, v] = 1 if $(u, v) \in E$ and A[u, v] = 0 if $(u, v) \notin E$. A[u, v] is not same as A[v, u].
- **Adjacency Lists**: for each node u, Out(u) (also referred to as Adj(u)) and In(u) store out-going edges and in-coming edges from u.

Default representation is adjacency lists.

A Concrete Representation for Directed Graphs

Concrete representation discussed previously for undirected graphs easily extends to directed graphs.

- A <u>(directed) path</u> is a sequence of <u>distinct</u> vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$. The length of the path is k-1 and the path is from v_1 to v_k .
 - By convention, a single node u is a path of length 0.
- ② A <u>cycle</u> is a sequence of <u>distinct</u> vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$ and $(v_k, v_1) \in E$. By convention, a single node u is not a cycle.
- A vertex can reach if there is a path from to Alternatively can be reached from
- Let rch(u) be the set of all vertices reachable from u.

- A <u>(directed) path</u> is a sequence of <u>distinct</u> vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$. The length of the path is k-1 and the path is from v_1 to v_k .
 - By convention, a single node u is a path of length 0.
- ② A <u>cycle</u> is a sequence of <u>distinct</u> vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$ and $(v_k, v_1) \in E$. By convention, a single node u is not a cycle.
- A vertex can reach if there is a path from to Alternatively can be reached from
- ① Let rch(u) be the set of all vertices reachable from u.

- A <u>(directed) path</u> is a sequence of <u>distinct</u> vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$. The length of the path is k-1 and the path is from v_1 to v_k .
 - By convention, a single node u is a path of length 0.
- ② A <u>cycle</u> is a sequence of <u>distinct</u> vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$ and $(v_k, v_1) \in E$. By convention, a single node u is not a cycle.
- ullet A vertex u can reach v if there is a path from u to v. Alternatively v can be reached from u
- Let rch(u) be the set of all vertices reachable from u.

- A (directed) path is a sequence of distinct vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$. The length of the path is k-1 and the path is from v_1 to v_k .
 - By convention, a single node u is a path of length 0.
- ② A <u>cycle</u> is a sequence of <u>distinct</u> vertices v_1, v_2, \ldots, v_k such that $(v_i, v_{i+1}) \in E$ for $1 \le i \le k-1$ and $(v_k, v_1) \in E$. By convention, a single node u is not a cycle.
- ullet A vertex u can reach v if there is a path from u to v. Alternatively v can be reached from u
- Let rch(u) be the set of all vertices reachable from u.

Connectivity contd

Asymmetricity: **D** can reach **B** but **B** cannot reach **D**

Questions

- Is there a notion of connected components?
- ② How do we understand connectivity in directed graphs?

Connectivity contd

Asymmetricity: D can reach B but B cannot reach D

Questions:

- Is there a notion of connected components?
- We have a second to the sec

THE END

...

(for now)