Algorithms & Models of Computation
CS/ECE 374, Fall 2020

14.5.2

Formal description of algorithm

79/83

Recursive solution

Q Input: w =wiwr...w,

@ Assume r non-terminals in G:

Q Rsx rt symbol. -

Qéib. TRUE <= WsWgsi1...,Wsi0—1 € L(Rp).

= Substring w starting at pos £ of length s is deriveable by R}.

80/83

Recursive solution

o

(2]
o
o

© ©

Input: w = wiws ... w,

Assume r non-terminals in G: Ry, ..., R,.

R;: Start symbol.

f(¢,s,b): TRUE <= wews 1...,Ws o1 € L(Rp).

= Substring w starting at pos £ of length s is deriveable by R}.
Recursive formula: f(1,s,a)is 1 <— (Ra — w5> € G.
For £ > 1: f(length,start pos, variable index)

£—1

f(L,s,a)=\/ \V <f(u,s,6)/\f(f—u75+u,v))

u=1 (R,—RgRy)EG

80/83

Recursive solution

o

(2]
o
o

© ©

Input: w = wiws ... w,
Assume r non-terminals in G: Ry, ..., R,.
R;: Start symbol.

f(é, S, b) TRUE < wswgi1...,Ws p_1 € L(Rb)
= Substring w starting at pos £ of length s is deriveable by R}.

Recursive formula: f(1,s,a)is 1 <— (Ra — ws) € G.
For £ > 1: f(length,start pos, variable index)

f(ﬂsa)—_/ Vo (FlsB) AR~ s + o)

(Ra—RsRy)EG

Output©<:> f@l =1.

80/83

Analysis
Assume G = {Ry, Ry, ..., R} with start symbol R,

° f ength start pos wl_)l/e_giex

@ Number of su problems O(rn?

81/83

Analysis

Assume G = {Ry, Ry, ..., R} with start symbol R,
o f(length, start pos, variable index).

e Number of subproblems: O(rn?)
@ Space: @

@ Time to evaluate a subpro?lem f/om previous ones: (@n)

P is set of rules

i

81/83

Analysis

Assume G = {Ry, Ry, ..., R} with start symbol R,
o f(length, start pos, variable index).
e Number of subproblems: O(rn?)
e Space: O(rn?)
@ Time to evaluate a subproblem from previous ones: O(|P|n)
P is set of rules

e Total time: O(|P|rn3) which is polynomial in both |w| and |G|. For fixed G the
run time is cubic in input string length. [HS

@ Running time can be improved to O(ni@l).

@ Not practical for most programming languages. Most languages assume restricted
forms of CEF'Gs that enable more efficient parsing algorithms.

81/83

CYK Algorithm

Input string: X =x1...X,.

Input grammar G: r nonterminal symbols Rj...R,, R; start symbol.

P ll‘l [r‘ﬂ@_ Array of booleans. Initialize all to FALSE
for s=1 to n do
for each unit production R, — x; do
P[1][s][v] «+ TRUE
for £=2 to n do // Length of span
for s=1ton—£+1do // Start of span
for u=1 to E— 1 do // Partition of span
for all (R, — RgR,) € G do
i POIIIo) amt Pl — ls +] then
P[{][s][a] < TRUE
if P[n][1][1] is TRUE then
return ~~ X is member of language''
else
return ~~ X is not member of language''

82/83

THE END

(for now)

