
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

14.5.2
Formal description of algorithm
FLNAME:14.5.2.0 ZZZ:14.5.2.0 Formal description of algorithm

79 / 83

Recursive solution
1 Input: w = w1w2 . . .wn
2 Assume r non-terminals in G: R1, . . . ,Rr .
3 R1: Start symbol.
4 f (`, s, b): TRUE ⇐⇒ wsws+1 . . . ,ws+`−1 ∈ L(Rb).

= Substring w starting at pos ` of length s is deriveable by Rb .
5 Recursive formula: f (1, s, a) is 1 ⇐⇒

(
Ra → ws

)
∈ G.

6 For ` > 1: f
(
length, start pos, variable index

)
f (`, s, a) =

`−1∨
µ=1

∨
(
Ra→RβRγ

)
∈G

(
f (µ, s, β) ∧ f (`− µ, s + µ, γ)

)

7 Output: w ∈ L(G) ⇐⇒ f (n, 1, 1) = 1.

80 / 83

Recursive solution
1 Input: w = w1w2 . . .wn
2 Assume r non-terminals in G: R1, . . . ,Rr .
3 R1: Start symbol.
4 f (`, s, b): TRUE ⇐⇒ wsws+1 . . . ,ws+`−1 ∈ L(Rb).

= Substring w starting at pos ` of length s is deriveable by Rb .
5 Recursive formula: f (1, s, a) is 1 ⇐⇒

(
Ra → ws

)
∈ G.

6 For ` > 1: f
(
length, start pos, variable index

)
f (`, s, a) =

`−1∨
µ=1

∨
(
Ra→RβRγ

)
∈G

(
f (µ, s, β) ∧ f (`− µ, s + µ, γ)

)

7 Output: w ∈ L(G) ⇐⇒ f (n, 1, 1) = 1.

80 / 83

Recursive solution
1 Input: w = w1w2 . . .wn
2 Assume r non-terminals in G: R1, . . . ,Rr .
3 R1: Start symbol.
4 f (`, s, b): TRUE ⇐⇒ wsws+1 . . . ,ws+`−1 ∈ L(Rb).

= Substring w starting at pos ` of length s is deriveable by Rb .
5 Recursive formula: f (1, s, a) is 1 ⇐⇒

(
Ra → ws

)
∈ G.

6 For ` > 1: f
(
length, start pos, variable index

)
f (`, s, a) =

`−1∨
µ=1

∨
(
Ra→RβRγ

)
∈G

(
f (µ, s, β) ∧ f (`− µ, s + µ, γ)

)

7 Output: w ∈ L(G) ⇐⇒ f (n, 1, 1) = 1.

80 / 83

Analysis
Assume G = {R1,R2, . . . ,Rr} with start symbol R1

f
(
length, start pos, variable index

)
.

Number of subproblems: O(rn2)

Space: O(rn2)

Time to evaluate a subproblem from previous ones: O(|P|n)
P is set of rules
Total time: O(|P|rn3) which is polynomial in both |w| and |G|. For fixed G the
run time is cubic in input string length.
Running time can be improved to O(n3|P|).
Not practical for most programming languages. Most languages assume restricted
forms of CFGs that enable more efficient parsing algorithms.

81 / 83

Analysis
Assume G = {R1,R2, . . . ,Rr} with start symbol R1

f
(
length, start pos, variable index

)
.

Number of subproblems: O(rn2)

Space: O(rn2)

Time to evaluate a subproblem from previous ones: O(|P|n)
P is set of rules
Total time: O(|P|rn3) which is polynomial in both |w| and |G|. For fixed G the
run time is cubic in input string length.
Running time can be improved to O(n3|P|).
Not practical for most programming languages. Most languages assume restricted
forms of CFGs that enable more efficient parsing algorithms.

81 / 83

Analysis
Assume G = {R1,R2, . . . ,Rr} with start symbol R1

f
(
length, start pos, variable index

)
.

Number of subproblems: O(rn2)

Space: O(rn2)

Time to evaluate a subproblem from previous ones: O(|P|n)
P is set of rules
Total time: O(|P|rn3) which is polynomial in both |w| and |G|. For fixed G the
run time is cubic in input string length.
Running time can be improved to O(n3|P|).
Not practical for most programming languages. Most languages assume restricted
forms of CFGs that enable more efficient parsing algorithms.

81 / 83

CYK Algorithm
Input string: X = x1 . . . xn.
Input grammar G: r nonterminal symbols R1...Rr, R1 start symbol.

P [n][n][r]: Array of booleans. Initialize all to FALSE
for s = 1 to n do

for each unit production Rv → xs do
P [1][s][v]← TRUE

for ` = 2 to n do // Length of span
for s = 1 to n − ` + 1 do // Start of span

for µ = 1 to `− 1 do // Partition of span
for all (Ra → RβRγ) ∈ G do

if P [p][s][β] and P [`− µ][s + µ][γ] then
P [`][s][a]← TRUE

if P [n][1][1] is TRUE then
return ``X is member of language''

else
return ``X is not member of language''

82 / 83

THE END
...

(for now)

83 / 83

