Algorithms & Models of Computation

CS/ECE 374, Fall 2020

14.5

Supplemental: Context free grammars: The CYK Algorithm

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

14.5.1

CYK: Problem statement, basic idea, and an example

Parsing

We saw regular languages and context free languages.

Most programming languages are specified via context-free grammars. Why?

- CFLs are sufficiently expressive to support what is needed.
- At the same time one can "efficiently" solve the parsing problem: given a string/program **w**, is it a valid program according to the CFG specification of the programming language?

CFG specification for C

```
<relational-expression> ::= <shift-expression>
                            <relational-expression> < <shift-expression>
                            <relational-expression> > <shift-expression>
                            <relational-expression> <= <shift-expression>
                            <relational-expression> >= <shift-expression>
<shift-expression> ::= <additive-expression>
                       <shift-expression> << <additive-expression>
                       <shift-expression> >> <additive-expression>
<additive-expression> ::= <multiplicative-expression>
                          <additive-expression> + <multiplicative-expression>
                          <additive-expression> - <multiplicative-expression>
<multiplicative-expression> ::= <cast-expression>
                                <multiplicative-expression> * <cast-expression>
                                <multiplicative-expression> / <cast-expression>
                                <multiplicative-expression> % <cast-expression>
<cast-expression> ::= <unary-expression>
                      ( <type-name> ) <cast-expression>
<unary-expression> ::= <postfix-expression>
                       ++ <unary-expression>
                       -- <unary-expression>
                       <unary-operator> <cast-expression>
                       sizeof <unary-expression>
                       sizeof <type-name>
<postfix-expression> ::= <primary-expression>
                         <postfix-expression> [ <expression> ]
                         <postfix-expression> ( {<assignment-expression>}* )
```

Algorithmic Problem

Given a CFG G = (V, (T)P)(S) and a string $w \in T^*$, is $w \in L(G)$?

- That is, does **S** derive **w**?
- Equivalently, is there a parse tree for w?

Simplifying assumption: G is in Chomsky Normal Form (CNF)

- Productions are all of the form $A \to BC$ or $A \to a$. If $\epsilon \in L$ then $S \to \epsilon$ is also allowed. (This is the only place in the grammar that has an ϵ .)
- Every CFG G can be converted into CNF form via an efficient algorithm
- Advantage: parse tree of constant degree.

Algorithmic Problem

Given a CFG G = (V, T, P, S) and a string $w \in T^*$, is $w \in L(G)$?

- That is, does S derive w?
- Equivalently, is there a parse tree for w?

Simplifying assumption: G is in Chomsky Normal Form (CNF)

- Productions are all of the form $A \to BC$ or $A \to a$. If $\epsilon \in \mathcal{L}$ then $S \to \epsilon$ is also allowed. (This is the only place in the grammar that has an ϵ .)
- Every CFG G can be converted into CNF form via an efficient algorithm
- Advantage: parse tree of constant degree.

Towards Recursive Algorithm

CYK Algorithm = Cocke-Younger-Kasami algorithm

Assume **G** is a CNF grammar.

S derives $\mathbf{w} \iff$ one of the following holds:

- |w| = 1 and $S \rightarrow w$ is a rule in P
- |w| > 1 and there is a rule $S \to AB$ and a split w = uv with $|u|, |v| \ge 1$ such

that \boldsymbol{A} derives \boldsymbol{u} and \boldsymbol{B} derives \boldsymbol{v}

Observation: Subproblems derive a substring of **w**.

Towards Recursive Algorithm

CYK Algorithm = Cocke-Younger-Kasami algorithm

Assume G is a CNF grammar.

S derives $\mathbf{w} \iff$ one of the following holds:

- |w| = 1 and $S \rightarrow w$ is a rule in P
- |w| > 1 and there is a rule $S \to AB$ and a split w = uv with $|u|, |v| \ge 1$ such that A derives u and B derives v

Observation: Subproblems generated require us to know if some non-terminal \boldsymbol{A} will derive a substring of \boldsymbol{w} .

$$S - \epsilon AB XB$$

$$X \rightarrow AY$$

$$A \rightarrow 0$$

 $B \rightarrow 1$

Question:

- Is **000111** in **L**(**G**)?
- Is **00011** in **L**(**G**)?

Order of evaluation for iterative algorithm: increasing order of substring length.

$$egin{aligned} \mathcal{S} &
ightarrow \epsilon \mid \mathcal{A}\mathcal{B} \mid \mathcal{X}\mathcal{B} \ \mathcal{Y} &
ightarrow \mathcal{A}\mathcal{B} \mid \mathcal{X}\mathcal{B} \ \mathcal{X} &
ightarrow \mathcal{A}\mathcal{Y} \ \mathcal{A} &
ightarrow 0 \ \mathcal{B} &
ightarrow 1 \end{aligned}$$

Input: 0	0	0	1	1	1
----------	---	---	---	---	---

$$S
ightarrow \epsilon \mid AB \mid XB$$

 $Y
ightarrow AB \mid XB$
 $X
ightarrow AY$
 $A
ightarrow 0$
 $B
ightarrow 1$

Len=1	Α	Α	Α	В	В	В
Input:	0	0	0,	1	1	1

$$egin{aligned} \mathcal{S} &
ightarrow \epsilon \mid \mathcal{A}\mathcal{B} \mid \mathcal{X}\mathcal{B} \ \mathcal{Y} &
ightarrow \mathcal{A}\mathcal{B} \mid \mathcal{X}\mathcal{B} \ \mathcal{X} &
ightarrow \mathcal{A}\mathcal{Y} \ \mathcal{A} &
ightarrow 0 \ \mathcal{B} &
ightarrow 1 \end{aligned}$$

Len=5	X					,	
Len=4	1	Y,B					
Len=3		YX			•		
Len=2		/	Υ				
Len=1	A/	Α	Α	В	В	В	
Input:	0	0	0	1	1	1	
	000()						

$$egin{aligned} \mathcal{S} &
ightarrow \epsilon \mid \mathcal{AB} \mid \mathcal{XB} \ \mathcal{Y} &
ightarrow \mathcal{AB} \mid \mathcal{XB} \ \mathcal{X} &
ightarrow \mathcal{AY} \ \mathcal{A} &
ightarrow 0 \ \mathcal{B} &
ightarrow 1 \end{aligned}$$

Len=6	S					
Len=5	X					
Len=4		Y,S				
Len=3		Χ				
Len=2			Υ			
Len=1	Α	Α	Α	В	В	В
Input:	0	0	0	1	1	1
						13

$$egin{aligned} \mathcal{S} &
ightarrow \epsilon \mid \mathcal{A}\mathcal{B} \mid \mathcal{X}\mathcal{B} \ \mathcal{Y} &
ightarrow \mathcal{A}\mathcal{B} \mid \mathcal{X}\mathcal{B} \ \mathcal{X} &
ightarrow \mathcal{A}\mathcal{Y} \ \mathcal{A} &
ightarrow 0 \ \mathcal{B} &
ightarrow 1 \end{aligned}$$

Input: 0 0 1 1 1

$$egin{aligned} \mathcal{S} &
ightarrow \epsilon \mid \mathcal{A}\mathcal{B} \mid \mathcal{X}\mathcal{B} \ \mathcal{Y} &
ightarrow \mathcal{A}\mathcal{B} \mid \mathcal{X}\mathcal{B} \ \mathcal{X} &
ightarrow \mathcal{A}\mathcal{Y} \ \mathcal{A} &
ightarrow 0 \ \mathcal{B} &
ightarrow 1 \end{aligned}$$

Len=1	Α	Α	В	В	В
Input:	0	0	1	1	1

$$egin{aligned} \mathcal{S} &
ightarrow \epsilon \mid \mathcal{A}\mathcal{B} \mid \mathcal{X}\mathcal{B} \ \mathcal{Y} &
ightarrow \mathcal{A}\mathcal{B} \mid \mathcal{X}\mathcal{B} \ \mathcal{X} &
ightarrow \mathcal{A}\mathcal{Y} \ \mathcal{A} &
ightarrow 0 \ \mathcal{B} &
ightarrow 1 \end{aligned}$$

Len=3	Χ				
Len=2		Υ			
Len=1	Α	Α	В	В	В
Input:	0	0	1	1	1

$$egin{aligned} \mathcal{S} &
ightarrow \epsilon \mid \mathcal{A}\mathcal{B} \mid \mathcal{X}\mathcal{B} \ \mathcal{Y} &
ightarrow \mathcal{A}\mathcal{B} \mid \mathcal{X}\mathcal{B} \ \mathcal{X} &
ightarrow \mathcal{A}\mathcal{Y} \ \mathcal{A} &
ightarrow 0 \ \mathcal{B} &
ightarrow 1 \end{aligned}$$

Len=4	Y,S				
Len=3	Χ				
Len=2		Υ			
Len=1	Α	Α	В	В	В
Input:	0	0	1	1	1

$$egin{aligned} \mathcal{S} &
ightarrow \epsilon \mid \mathcal{AB} \mid \mathcal{XB} \ \mathcal{Y} &
ightarrow \mathcal{AB} \mid \mathcal{XB} \ \mathcal{X} &
ightarrow \mathcal{AY} \ \mathcal{A} &
ightarrow 0 \ \mathcal{B} &
ightarrow 1 \end{aligned}$$

Len=5					
Len=4	Y,S				
Len=3	Х				
Len=2		Υ			
Len=1	Α	Α	В	В	В
Input:	0	0	1	1	1

THE END

..

(for now)