Algorithms & Models of Computation
CS/ECE 374, Fall 2020

14.2.4

Dynamic programming algorithm for
edit-distance

37/83

As part of the input...

The cost of aligning a character against another character

> : Alphabet

We are given a cost function (in a table):

Vb,c € & COSTIb][c] = cost of aligning b with c.

Vb ey COSTI[b][b] =0

d : price of deletion of insertion of a single character

38/83

Memoizing the Recursive Algorithm (Explicit Memoization)

edEMI(i,j) // A[l...i],B[1...j]
if MIi][j] < oo
return M[i|[j] // stored value
Input: Two strings i i=0orj—0

All...m] M(ill[j] = (i + j)o
B[l1...n] return M[i][i]J

m =&+ edEMI(i —1, j)

EditDistance (A, B) my = & + edEMI(i,j — 1)

int M[0..m][0..n]
Vi,j MIi]lj] <= oo —
return edEMI(m, n) ms = COST [A[i]] [B[j]]

+ edEMI(i—1,j—1)

MIi][j] = min(my, mp, m3)
return MIJi][j]

39/83

Dynamic program for edit distance

Removing Recursion to obtain Iterative Algorithm

EDIST(A[1..m], B[1..n])
int MJ[0..m][0..n]
for i=1 to m do MJi,0] =id
for j =1 to n do MJ0,j] = jé

for i=1 to m do
for j=1 to n do
COSTIA[i]] [Bj]] + Mi — 1][j — 1],
MIillj] = min { & + M[i — 1][j],
d + M[il[j — 1]

40/83

Dynamic program for edit distance

Removing Recursion to obtain Iterative Algorithm

EDIST(A[1..m], B[1..n])
int MJ[0..m][0..n]
for i=1 to m do MJi,0] =id
for j =1 to n do MJ0,j] = jé

for i=1 to m do
for j=1 to n do
COST [A[i]] [BLj]] + M[i — 1][j — 1],
MIillj] = min { & + M[i — 1][j],
d + M[il[j — 1]

Analysis J

40/83

Dynamic program for edit distance

Removing Recursion to obtain Iterative Algorithm

EDIST(A[1..m], B[1..n])
int MJ[0..m][0..n]
for i=1 to m do MJi,0] =id
for j =1 to n do MJ0,j] = jé

for i=1 to m do
for j=1 to n do
COST [A[i]] [BLj]] + M[i — 1][j — 1],
MIillj] = min { & + M[i — 1][j],
d + M[il[j — 1]

Analysis
@ Running time is O(mn).
@ Space used is O(mn).

40/83

THE END

(for now)

