Algorithms & Models of Computation

13.5

How to come up with dynamic
programming algorithm: summary

53/67



Dynamic Programming

@ Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

54 /67



Dynamic Programming

@ Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

@ Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

54 /67



Dynamic Programming

@ Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

@ Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

@ This gives an upper bound on the total running time if we use automatic/explicit

memoization.

54 /67



Dynamic Programming

2]
o
o

Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

This gives an upper bound on the total running time if we use automatic/explicit
memoization.

Come up with an explicit memoization algorithm for the problem.

54 /67



Dynamic Programming

006 o0 ©

Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

This gives an upper bound on the total running time if we use automatic/explicit
memoization.

Come up with an explicit memoization algorithm for the problem.

Eliminate recursion and find an iterative algorithm.

54 /67



Dynamic Programming

o

2]

©00 O

Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

This gives an upper bound on the total running time if we use automatic/explicit
memoization.

Come up with an explicit memoization algorithm for the problem.
Eliminate recursion and find an iterative algorithm.

...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.

54 /67



Dynamic Programming

o

2]

© 0060 O

Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

This gives an upper bound on the total running time if we use automatic/explicit
memoization.

Come up with an explicit memoization algorithm for the problem.
Eliminate recursion and find an iterative algorithm.

...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.
Optimize the resulting algorithm further

54 /67



Dynamic Programming

o

2]

©0 0006 O

Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

This gives an upper bound on the total running time if we use automatic/explicit
memoization.

Come up with an explicit memoization algorithm for the problem.
Eliminate recursion and find an iterative algorithm.

...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.
Optimize the resulting algorithm further

54 /67



Dynamic Programming

o

2]

000 000 O

Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

This gives an upper bound on the total running time if we use automatic/explicit
memoization.

Come up with an explicit memoization algorithm for the problem.

Eliminate recursion and find an iterative algorithm.

...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.

Optimize the resulting algorithm further

Get rich!

54 /67



THE END

(for now)



