
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

13.5
How to come up with dynamic
programming algorithm: summary
FLNAME:13.5.0.0 ZZZ:13.5.0.0 How to come up with dynamic programming algorithm: summary

53 / 67



Dynamic Programming

1 Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

2 Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

3 This gives an upper bound on the total running time if we use automatic/explicit
memoization.

4 Come up with an explicit memoization algorithm for the problem.

5 Eliminate recursion and find an iterative algorithm.

6 ...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.

7 Optimize the resulting algorithm further

8 ...

9 Get rich!

54 / 67



Dynamic Programming

1 Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

2 Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

3 This gives an upper bound on the total running time if we use automatic/explicit
memoization.

4 Come up with an explicit memoization algorithm for the problem.

5 Eliminate recursion and find an iterative algorithm.

6 ...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.

7 Optimize the resulting algorithm further

8 ...

9 Get rich!

54 / 67



Dynamic Programming

1 Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

2 Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

3 This gives an upper bound on the total running time if we use automatic/explicit
memoization.

4 Come up with an explicit memoization algorithm for the problem.

5 Eliminate recursion and find an iterative algorithm.

6 ...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.

7 Optimize the resulting algorithm further

8 ...

9 Get rich!

54 / 67



Dynamic Programming

1 Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

2 Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

3 This gives an upper bound on the total running time if we use automatic/explicit
memoization.

4 Come up with an explicit memoization algorithm for the problem.

5 Eliminate recursion and find an iterative algorithm.

6 ...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.

7 Optimize the resulting algorithm further

8 ...

9 Get rich!

54 / 67



Dynamic Programming

1 Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

2 Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

3 This gives an upper bound on the total running time if we use automatic/explicit
memoization.

4 Come up with an explicit memoization algorithm for the problem.

5 Eliminate recursion and find an iterative algorithm.

6 ...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.

7 Optimize the resulting algorithm further

8 ...

9 Get rich!

54 / 67



Dynamic Programming

1 Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

2 Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

3 This gives an upper bound on the total running time if we use automatic/explicit
memoization.

4 Come up with an explicit memoization algorithm for the problem.

5 Eliminate recursion and find an iterative algorithm.

6 ...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.

7 Optimize the resulting algorithm further

8 ...

9 Get rich!

54 / 67



Dynamic Programming

1 Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

2 Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

3 This gives an upper bound on the total running time if we use automatic/explicit
memoization.

4 Come up with an explicit memoization algorithm for the problem.

5 Eliminate recursion and find an iterative algorithm.

6 ...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.

7 Optimize the resulting algorithm further

8 ...

9 Get rich!

54 / 67



Dynamic Programming

1 Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

2 Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

3 This gives an upper bound on the total running time if we use automatic/explicit
memoization.

4 Come up with an explicit memoization algorithm for the problem.

5 Eliminate recursion and find an iterative algorithm.

6 ...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.

7 Optimize the resulting algorithm further

8 ...

9 Get rich!

54 / 67



Dynamic Programming

1 Find a “smart” recursion for the problem in which the number of distinct
subproblems is small; polynomial in the original problem size.

2 Estimate the number of subproblems, the time to evaluate each subproblem and
the space needed to store the value.

3 This gives an upper bound on the total running time if we use automatic/explicit
memoization.

4 Come up with an explicit memoization algorithm for the problem.

5 Eliminate recursion and find an iterative algorithm.

6 ...need to find the right way or order the subproblems evaluation. Th is leads to an
a dynamic programming algorithm.

7 Optimize the resulting algorithm further

8 ...

9 Get rich!

54 / 67



THE END
...

(for now)

55 / 67


