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Sequences

Definition 13.1.
Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is number of elements
in the list.

Definition 13.2.
ai1, . . . , aik is a subsequence of a1, . . . , an if 1 ≤ i1 < i2 < . . . < ik ≤ n.

Definition 13.3.
A sequence is increasing if a1 < a2 < . . . < an. It is non-decreasing if
a1 ≤ a2 ≤ . . . ≤ an. Similarly decreasing and non-increasing.
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Sequences
Example...

Example 13.4.
1 Sequence: 6, 3, 5, 2, 7, 8, 1, 9

2 Subsequence of above sequence: 5, 2, 1

3 Increasing sequence: 3, 5, 9, 17, 54

4 Decreasing sequence: 34, 21, 7, 5, 1

5 Increasing subsequence of the first sequence: 2, 7, 9.
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Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of maximum length

Example 13.5.
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3 Longest increasing subsequence: 3, 5, 7, 8
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Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

1 Case 1: Does not contain A[n] in which case
LIS(A[1..n]) = LIS(A[1..(n − 1)])

2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation 13.6.
For second case we want to find a subsequence in A[1..(n − 1)] that is restricted to
numbers less than A[n]. This suggests that a more general problem is
LIS smaller(A[1..n], x) which gives the longest increasing subsequence in A where
each number in the sequence is less than x .
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Recursive Approach

LIS(A[1..n]): the length of longest increasing subsequence in A

LIS smaller(A[1..n], x): length of longest increasing subsequence in A[1..n] with all
numbers in subsequence less than x

LIS smaller(A[1..i ], x):
if i = 0 then return 0
m = LIS smaller(A[1..i − 1], x)
if A[i ] < x then

m = max(m, 1 + LIS smaller(A[1..i − 1],A[i ]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)
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Recursive Approach

LIS smaller(A[1..i ], x):
if i = 0 then return 0
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m = max(m, 1 + LIS smaller(A[1..i − 1],A[i ]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞) generate? O(n2)

What is the running time if we memoize recursion? O(n2) since each call takes
O(1) time to assemble the answers from to recursive calls and no other
computation.

How much space for memoization? O(n2)
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Naming subproblems and recursive equation

After seeing that number of subproblems is O(n2) we name them to help us understand
the structure better. For notational ease we add∞ at end of array (in position n + 1)

LIS(i , j): length of longest increasing sequence in A[1..i ] among numbers less than
A[j ] (defined only for i < j)

Base case: LIS(0, j) = 0 for 1 ≤ j ≤ n + 1
Recursive relation:

LIS(i , j) = LIS(i − 1, j) if A[i ] > A[j ]

LIS(i , j) = max{LIS(i − 1, j), 1 + LIS(i − 1, i)} if A[i ] ≤ A[j ]

Output: LIS(n, n + 1).
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How to order bottom up computation?

C
S 

37
4

For i<j

1 2 3 4 n+1

0

1

2

3

n

i

j
Recursive relation:

LIS(i , j) =
0 i = 0

LIS(i − 1, j) A[i ] > A[j ]

max

{
LIS(i − 1, j)

1 + LIS(i − 1, i)
A[i ] ≤ A[j ]

Sequence: A[1..7] = 6, 3, 5, 2, 7, 8, 1
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Iterative algorithm
The dynamic program for longest increasing subsequence

LIS-Iterative(A[1..n]):
A[n + 1] =∞
int LIS[0..n, 1..n + 1]
for j = 1 . . . n + 1) do LIS[0, j ] = 0

for i = 1 . . . n) do
for (j = i + 1 . . . n do

if (A[i ] > A[j ])
LIS[i , j ] = LIS[i − 1, j ]

else
LIS[i , j ] = max(LIS[i − 1, j ], 1 + LIS[i − 1, i ])

Return LIS[n, n + 1]

Running time: O(n2)
Space: O(n2)
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Two comments

Question: Can we compute an optimum solution and not just its value?
Yes! See notes.

Question: Is there a faster algorithm for LIS? Yes! Using a different recursion and
optimizing one can obtain an O(n log n) time and O(n) space algorithm. O(n log n)
time is not obvious. Depends on improving time by using data structures on top of
dynamic programming.
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THE END
...

(for now)
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