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13.3
Checking if a string is in L∗
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Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via function
IsInL(string x) that decides whether x is in L

Goal Decide if w ∈ L∗ using IsInL(string x) as a black box sub-routine
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Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via function
IsInL(string x) that decides whether x is in L

Goal Decide if using IsInL(string x) as a black box sub-routine

Example 13.1.
Suppose L is English and we have a procedure to check whether a string/word is in the
English dictionary.

Is the string “isthisanenglishsentence” in English∗?
Is “stampstamp” in English∗?
Is “zibzzzad” in English∗?
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Recursive Solution

When is w ∈ L∗?

w ∈ L∗ ⇐⇒ w ∈ L or if w = uv where u ∈ L∗ and v ∈ L, |v | ≥ 1.

Assume w is stored in array A[1..n]

IsInL∗(A[1..n]):
If (n = 0) Output YES

If (IsInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If IsInL∗(A[1..i ]) and IsInL(A[i + 1..n])
Output YES

Output NO
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Question: How many distinct sub-problems does IsInL∗(A[1..n]) generate? O(n)
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Example

Consider string samiam
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Naming subproblems and recursive equation

After seeing that number of subproblems is O(n) we name them to help us understand
the structure better.

ISL∗(i): a boolean which is 1 if A[1..i ] is in L∗, 0 otherwise

Base case: ISL∗(0) = 1 interpreting A[1..0] as ε
Recursive relation:

ISL∗(i) = 1 if
∃j , 0 ≤ j < i s.t ISL∗(j) and IsInL(A[j + 1..i ])
ISL∗(i) = 0 otherwise

Output: ISL∗(n)
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Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive
algorithm into an iterative algorithm via explicit memoization and bottom up
computation.

Why? Mainly for further optimization of running time and space.

How?

First, allocate a data structure (usually an array or a multi-dimensional array that
can hold values for each of the subproblems)

Figure out a way to order the computation of the sub-problems starting from the
base case.

Caveat: Dynamic programming is not about filling tables. It is about finding a
smart recursion. First, find the correct recursion.
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Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL∗[0..(n + 1)]
ISL∗[0] = TRUE
for i = 1 to n do

for j = 0 to i − 1 do
if (ISL∗[j ] and IsInL(A[j + 1..i ]))

ISL∗[i ] = TRUE
break

if (ISL∗[n] = 1) Output YES

else Output NO

Running time: O(n2) (assuming call to IsInL is O(1) time)

Space: O(n)
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Example

Consider string samiam
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THE END
...

(for now)
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