
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

13.2
Dynamic programming
FLNAME:13.2.0.0 ZZZ:13.2.0.0 Dynamic programming

22 / 67

Removing the recursion by filling the table in the right order
“Dynamic programming”

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (M[n] 6= −1)
return M[n]

M[n]⇐ Fib(n − 1) + Fib(n − 2)
return M[n]

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1
for i = 2 to n do

F [i] = F [i − 1] + F [i − 2]
return F [n]

23 / 67

Dynamic programming: Saving space!

Saving space. Do we need an array of n numbers? Not really.

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1
for i = 2 to n do

F [i] = F [i − 1] + F [i − 2]
return F [n]

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

prev2 = 0
prev1 = 1
for i = 2 to n do

temp = prev1 + prev2
prev2 = prev1
prev1 = temp

return prev1

24 / 67

Dynamic programming – quick review

Dynamic Programming is smart recursion
+ explicit memoization
+ filling the table in right order
+ removing recursion.

25 / 67

Dynamic programming – quick review

Dynamic Programming is smart recursion
+ explicit memoization
+ filling the table in right order
+ removing recursion.

25 / 67

Dynamic programming – quick review

Dynamic Programming is smart recursion
+ explicit memoization
+ filling the table in right order
+ removing recursion.

25 / 67

Analyzing memoized recursive function

Question: Suppose we have a recursive program foo(x) that takes an input x .

On input of size n the number of distinct sub-problems that foo(x) generates is at
most A(n)

foo(x) spends at most B(n) time not counting the time for its recursive calls.

Suppose we memoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed problems takes O(1)
time.
Q: What is an upper bound on the running time of memoized version of foo(x) if
|x| = n? O(A(n)B(n)).

26 / 67

Analyzing memoized recursive function

Question: Suppose we have a recursive program foo(x) that takes an input x .

On input of size n the number of distinct sub-problems that foo(x) generates is at
most A(n)

foo(x) spends at most B(n) time not counting the time for its recursive calls.

Suppose we memoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed problems takes O(1)
time.
Q: What is an upper bound on the running time of memoized version of foo(x) if
|x| = n? O(A(n)B(n)).

26 / 67

Analyzing memoized recursive function

Question: Suppose we have a recursive program foo(x) that takes an input x .

On input of size n the number of distinct sub-problems that foo(x) generates is at
most A(n)

foo(x) spends at most B(n) time not counting the time for its recursive calls.

Suppose we memoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed problems takes O(1)
time.
Q: What is an upper bound on the running time of memoized version of foo(x) if
|x| = n? O(A(n)B(n)).

26 / 67

Analyzing memoized recursive function

Question: Suppose we have a recursive program foo(x) that takes an input x .

On input of size n the number of distinct sub-problems that foo(x) generates is at
most A(n)

foo(x) spends at most B(n) time not counting the time for its recursive calls.

Suppose we memoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed problems takes O(1)
time.
Q: What is an upper bound on the running time of memoized version of foo(x) if
|x| = n? O(A(n)B(n)).

26 / 67

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

13.2.1
Fibonacci numbers are big – corrected
running time analysis
FLNAME:13.2.1.0 ZZZ:13.2.1.0 Fibonacci numbers are big – corrected running time analysis

27 / 67

Back to Fibonacci Numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

prev2 = 0
prev1 = 1
for i = 2 to n do

temp = prev1 + prev2
prev2 = prev1
prev1 = temp

return prev1

Is the iterative algorithm a polynomial
time algorithm? Does it take O(n)
time?

1 input is n and hence input size is
Θ(log n)

2 output is F (n) and output size is
Θ(n). Why?

3 Hence output size is exponential in
input size so no polynomial time
algorithm possible!

4 Running time of iterative
algorithm: Θ(n) additions but
number sizes are O(n) bits long!
Hence total time is O(n2), in fact
Θ(n2). Why?

28 / 67

THE END
...

(for now)

29 / 67

