Algorithms & Models of Computation

CS/ECE 374, Fall 2020

13.1.2

Automatic/implicit memoization

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

```
Fib(n):
    if (n = 0)
        return 0
    if (n = 1)
        return 1
    if (Fib(n) was previously computed)
        return stored value of Fib(n)
    else
        return Fib(n - 1) + Fib(n - 2)
```

How do we keep track of previously computed values? Two methods: explicitly and implicitly (via data structure)

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

```
Fib(n):
    if (n = 0)
        return 0
    if (n = 1)
        return 1
    if (Fib(n) was previously computed)
        return stored value of Fib(n)
    else
        return Fib(n - 1) + Fib(n - 2)
```

How do we keep track of previously computed values? Two methods: explicitly and implicitly (via data structure)

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

```
Fib(n):
    if (n = 0)
        return 0
    if (n = 1)
        return 1
    if (Fib(n) was previously computed)
        return stored value of Fib(n)
    else
        return Fib(n - 1) + Fib(n - 2)
```

How do we keep track of previously computed values?

Two methods: explicitly and implicitly (via data structure)

Can we convert recursive algorithm into an efficient algorithm without explicitly doing an iterative algorithm?

```
Fib(n):
    if (n = 0)
        return 0
    if (n = 1)
        return 1
    if (Fib(n) was previously computed)
        return stored value of Fib(n)
    else
        return Fib(n - 1) + Fib(n - 2)
```

How do we keep track of previously computed values? Two methods: explicitly and implicitly (via data structure)

Automatic implicit memoization

Initialize a (dynamic) dictionary data structure **D** to empty

```
Fib(n):

if (n = 0)
return 0

if (n = 1)
return 1

if (n \text{ is already in } D)
return value stored with n \text{ in } D

val \Leftarrow \text{Fib}(n-1) + \text{Fib}(n-2)
Store (n, val) in D
return val
```

Use hash-table or a map to remember which values were already computed.

Explicit memoization (not automatic)

- **1** Initialize table/array M of size n: M[i] = -1 for $i = 0, \ldots, n$.
- Resulting code

```
\begin{aligned} &\text{ if } &(\textit{n}=0)\\ &&\text{ return } 0\\ &\text{ if } &(\textit{n}=1)\\ &&\text{ return } 1\\ &\text{ if } &(\textit{M}[\textit{n}]\neq-1)\text{ }//\text{ }\textit{M}[\textit{n}]\text{: stored value of } \text{Fib}(\textit{n})\\ &&\text{ return }\textit{M}[\textit{n}]\\ &&\textit{M}[\textit{n}]\Leftarrow \text{Fib}(\textit{n}-1)+\text{Fib}(\textit{n}-2)\\ &&\text{ return }\textit{M}[\textit{n}] \end{aligned}
```

Need to know upfront the number of subproblems to allocate memory.

Explicit memoization (not automatic)

- **1** Initialize table/array M of size n: M[i] = -1 for $i = 0, \ldots, n$.
- ② Resulting code:

```
Fib(n):

if (n = 0)

return 0

if (n = 1)

return 1

if (M[n] \neq -1) // M[n]: stored value of Fib(n)

return M[n]

M[n] \Leftarrow Fib(n-1) + Fib(n-2)

return M[n]
```

Need to know upfront the number of subproblems to allocate memory.

Explicit memoization (not automatic)

- **1** Initialize table/array M of size n: M[i] = -1 for $i = 0, \ldots, n$.
- Resulting code:

```
Fib(n):

if (n = 0)

return 0

if (n = 1)

return 1

if (M[n] \neq -1) // M[n]: stored value of Fib(n)

return M[n]

M[n] \Leftarrow Fib(n - 1) + Fib(n - 2)

return M[n]
```

Need to know upfront the number of subproblems to allocate memory.

Recursive version:

```
f(x_1, x_2, \ldots, x_d):
```

Recursive version with memoization:

```
g(x_1, x_2, \dots, x_d):

if f already computed for (x_1, x_2, \dots, x_d) then

return value already computed

NEW_CODE
```

- NEW_CODE:
 - lacktriangle Replaces any "return lpha" with
 - 2 Remember " $f(x_1, \ldots, x_d) = \alpha$ "; return α .

Recursive version:

$$f(x_1, x_2, \dots, x_d)$$
:

CODE

Recursive version with memoization:

```
g(x_1, x_2, \dots, x_d):

if f already computed for (x_1, x_2, \dots, x_d) then

return value already computed

NEW_CODE
```

- NEW_CODE:
 - lacktriangle Replaces any "return lpha" with
 - 2 Remember " $f(x_1, \ldots, x_d) = \alpha$ "; return α .

Recursive version:

$$f(x_1, x_2, \dots, x_d)$$
:

CODE

Recursive version with memoization:

```
g(x_1, x_2, \dots, x_d):

if f already computed for (x_1, x_2, \dots, x_d) then

return value already computed

NEW_CODE
```

- NEW_CODE:
 - **1** Replaces any "**return** α " with
 - 2 Remember " $f(x_1, \ldots, x_d) = \alpha$ "; return α .

- Explicit memoization (on the way to iterative algorithm) preferred:
 - analyze problem ahead of time
 - Allows for efficient memory allocation and access
- 2 Implicit (automatic) memoization:
 - problem structure or algorithm is not well understood.
 - Need to pay overhead of data-structure.
 - § Functional languages (e.g., LISP) automatically do memoization, usually via hashing based dictionaries.

- Explicit memoization (on the way to iterative algorithm) preferred:
 - analyze problem ahead of time
 - Allows for efficient memory allocation and access.
- Implicit (automatic) memoization:
 - problem structure or algorithm is not well understood.
 - Need to pay overhead of data-structure.
 - § Functional languages (e.g., LISP) automatically do memoization, usually via hashing based dictionaries.

- Explicit memoization (on the way to iterative algorithm) preferred:
 - analyze problem ahead of time
 - Allows for efficient memory allocation and access.
- Implicit (automatic) memoization:
 - problem structure or algorithm is not well understood.
 - Need to pay overhead of data-structure.
 - § Functional languages (e.g., LISP) automatically do memoization, usually via hashing based dictionaries.

- Explicit memoization (on the way to iterative algorithm) preferred:
 - analyze problem ahead of time
 - Allows for efficient memory allocation and access.
- Implicit (automatic) memoization:
 - problem structure or algorithm is not well understood.
 - Need to pay overhead of data-structure.
 - Functional languages (e.g., LISP) automatically do memoization, usually via hashing based dictionaries.

- Explicit memoization (on the way to iterative algorithm) preferred:
 - analyze problem ahead of time
 - Allows for efficient memory allocation and access.
- 2 Implicit (automatic) memoization:
 - problem structure or algorithm is not well understood.
 - Need to pay overhead of data-structure.
 - Functional languages (e.g., LISP) automatically do memoization, usually via hashing based dictionaries.

Explicit/implicit memoization for Fibonacci

```
Init: M[i] = -1, i = 0, ..., n.

Fib(k):

if (k = 0)

return 0

if (k = 1)

return 1

if (M[k] \neq -1)

return M[n]

M[k] \Leftarrow Fib(k-1) + Fib(k-2)

return M[k]
```

Explicit memoization

```
Init:
       Init dictionary D
Fib(n):
    if (n = 0)
        return 0
    if (n = 1)
        return 1
    if (n is already in D)
        return value stored with n in D
         val \Leftarrow Fib(n-1) + Fib(n-2)
    Store (n, val) in D
    return val
```

Implicit memoization

How many distinct calls?

```
\begin{array}{ll} \mathbf{binom}(\boldsymbol{t},\ \boldsymbol{b}) & //\ \mathbf{computes}\ \binom{t}{\boldsymbol{b}} \\ \mathbf{if}\ \boldsymbol{t} = 0\ \mathbf{then}\ \mathbf{return}\ 0 \\ \mathbf{if}\ \boldsymbol{b} = \boldsymbol{t}\ \mathbf{or}\ \boldsymbol{b} = 0\ \mathbf{then}\ \mathbf{return}\ 1 \\ \mathbf{return}\ \mathbf{binom}(\boldsymbol{t}-1,\boldsymbol{b}-1) + \mathbf{binom}(\boldsymbol{t}-1,\boldsymbol{b}). \end{array}
```

How many distinct calls does $binom(n, \lfloor n/2 \rfloor)$ makes during its recursive execution?

- $\Theta(1)$.
- $\Theta(n)$.
- $\Theta(n \log n)$.
- $\Theta(\mathbf{n}^2)$.
- $\Theta\left(\binom{n}{\lfloor n/2\rfloor}\right).$

That is, if the algorithm calls recursively binom(17, 5) about 5000 times during the computation, we count this is a single distinct call.

Running time of memoized binom?

```
\begin{array}{ll} \textbf{\textit{D}}\colon \text{ Initially an empty dictionary.} \\ \textbf{\textit{binomM}}(t,\ b) & \text{// computes } \binom{t}{b} \\ \textbf{if } b = t \text{ then return 1} \\ \textbf{if } b = 0 \text{ then return 0} \\ \textbf{if } D[t,b] \text{ is defined then return } D[t,b] \\ D[t,b] \Leftarrow \textbf{\textit{binomM}}(t-1,b-1) + \textbf{\textit{binomM}}(t-1,b). \\ \textbf{\textit{return }} D[t,b] \end{array}
```

Assuming that every arithmetic operation takes O(1) time, What is the running time of binomM(n, |n/2|)?

- $\Theta(1)$.
- $\Theta(n)$.
- $\Theta(\mathbf{n}^2)$.
- $\Theta(n^3)$.

THE END

...

(for now)