Algorithms & Models of Computation
CS/ECE 374, Fall 2020

13.1.2

Automatic/implicit memoization
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Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm without explicitly doing
an iterative algorithm?
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Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm without explicitly doing
an iterative algorithm?

Fib(n) :
if (n=0)
return 0
if (n=1)
return 1
if (Fib(n) was previously computed)
return stored value of Fib(n)
else
return Fib(n — 1) + Fib(n — 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)
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Automatic implicit memoization
Initialize a (dynamic) dictionary data structure D to empty

Fib(n) :
if (n=0)
return 0
if (n=1)
return 1
if (n is already in D)
return value stored with n in D
val <= Fib(n — 1) + Fib(n — 2)
Store (n,val) in D
return val

Use hash-table or a map to remember which values were already computed.
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Explicit memoization (not automatic)

@ Initialize table/array M of size n: M[i] = —1 fori =0,...,n.
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Explicit memoization (not automatic)

@ Initialize table/array M of size n: M[i] = —1 fori =0,...,n.
@ Resulting code:
Fib(n) :
if (n=0)
return 0
if (n=1)
return 1
if (M[n] #—1) // Mln]: stored value of Fib(n)
return M[n|
M(n] < Fib(n — 1) + Fib(n — 2)
return M(n]

© Need to know upfront the number of subproblems to allocate memory.
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Recursion tree for the memoized Fib...
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Automatic Memoization

@ Recursive version:

f(xla X290 00y Xd):
CODE
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Automatic Memoization

@ Recursive version:

f(xla X290 00y xd):
CODE

@ Recursive version with memoization:

g(X1, X2y vy Xd):
if f already computed for (xi,Xz,...,Xs) then
return value already computed
NEW_CODE
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Automatic Memoization

@ Recursive version:

f(xla X290 00y xd):
CODE

@ Recursive version with memoization:

g(x17x27°°'axd)3

return value already computed
NEW_CODE

if f already computed for (xi,Xp,...

,x4) then

@ NEW_CODE:

©® Replaces any “return o with
© Remember “f(x1,...,xq4) = @"; return a.
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Explicit vs Implicit Memoization

@ Explicit memoization (on the way to iterative algorithm) preferred:
@ analyze problem ahead of time
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Explicit vs Implicit Memoization

@ Explicit memoization (on the way to iterative algorithm) preferred:
@ analyze problem ahead of time
@ Allows for efficient memory allocation and access.
@ Implicit (automatic) memoization:
@ problem structure or algorithm is not well understood.
@ Need to pay overhead of data-structure.
© Functional languages (e.g., LISP) automatically do memoization, usually via
hashing based dictionaries.
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Explicit /implicit memoization for Fibonacci

Init: MJ[il=-1, i=0,...,n.

Fib (k) :
if (k=0)
return 0
if (k=1
return 1
if (M[k]# —1)
return M[n|
MI[k] <= Fib(k — 1) + Fib(k — 2)
return M[k]

Explicit memoization

Init:

Fib(n):

Init dictionary D

if (n=0)

return 0

if (n=1)

return 1

if (n is already in D)
return value stored with n in D

val <= Fib(n — 1) + Fib(n — 2)

Store (n,val) in D
return val

Implicit memoization
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How many distinct calls?

binom(t, b) // computes (;)
if t =0 then return 0
if b=t or b=0 then return 1
return binom(t — 1, b — 1) + binom(t — 1, b).

How many distinct calls does binom(n, | n/2|) makes during its recursive execution?
@ O(1).

@ O(n).

@ O(nlogn).

@ O(n?).

¢ e((m?zj))-

That is, if the algorithm calls recursively binom(17,5) about 5000 times during the
computation, we count this is a single distinct call.
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Running time of memoized binom?

D: 1Initially an empty dictionary.
binomM(t, b)  // computes (,)
if b =1t then return 1
if b =0 then return 0
if D[t,b] is defined then return DIt, b]
D[t, b] <= binomM(t — 1,b — 1) + binomM(t — 1, b).
return Dit, b]

Assuming that every arithmetic operation takes O(1) time, What is the
binomM(n, |n/2])?

Q@
Q@

running time of
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THE END

(for now)



