Algorithms & Models of Computation

CS/ECE 374, Fall 2020

Introduction to Dynamic Programming

Lecture 13 Thursday, October 8, 2020

LATEXed: October 13, 2020 09:52

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

13.1

Recursion and Memoization

Algorithms & Models of Computation

CS/ECE 374, Fall 2020

13.1.1

Fibonacci Numbers

Fibonacci Numbers

Fibonacci numbers defined by recurrence:

$$F(n) = F(n-1) + F(n-2)$$
 and $F(0) = 0, F(1) = 1$.

These numbers have many interesting properties. A journal The Fibonacci Quarterly!

- **1** Binet's formula: $F(n) = \frac{\varphi^n (1-\varphi)^n}{\sqrt{5}} \approx \frac{1.618^n (-0.618)^n}{\sqrt{5}} \approx \frac{1.618^n}{\sqrt{5}}$ φ is the golden ratio $(1+\sqrt{5})/2 \simeq 1.618$.

Fibonacci Numbers

Fibonacci numbers defined by recurrence:

$$F(n) = F(n-1) + F(n-2)$$
 and $F(0) = 0, F(1) = 1$.

These numbers have many interesting properties. A journal The Fibonacci Quarterly!

- **1** Binet's formula: $F(n) = \frac{\varphi^n (1-\varphi)^n}{\sqrt{5}} \approx \frac{1.618^n (-0.618)^n}{\sqrt{5}} \approx \frac{1.618^n}{\sqrt{5}}$ φ is the golden ratio $(1+\sqrt{5})/2 \simeq 1.618$.

How many bits?

Consider the *n*th Fibonacci number F(n). Writing the number F(n) in base 2 requires

- $\Theta(n^2)$ bits.
- $\Theta(n)$ bits.
- $\Theta(\log n)$ bits.
- $\Theta(\log \log n)$ bits.

Question: Given n, compute F(n).

```
Fib(n):

if (n = 0)

return 0

else if (n = 1)

return 1

else

return Fib(n - 1) + Fib(n - 2)
```

Running time? Let T(n) be the number of additions in Fib(n).

$$T(n) = T(n-1) + T(n-2) + 1$$
 and $T(0) = T(1) = 0$

Question: Given n, compute F(n).

```
Fib(n):
    if (n = 0)
        return 0
    else if (n = 1)
        return 1
    else
        return Fib(n - 1) + Fib(n - 2)
```

Running time? Let T(n) be the number of additions in Fib(n).

$$oldsymbol{T}(oldsymbol{n}) = oldsymbol{T}(oldsymbol{n}-1) + oldsymbol{T}(oldsymbol{n}-2) + 1$$
 and $oldsymbol{T}(0) = oldsymbol{T}(1) = 0$

Question: Given n, compute F(n).

```
Fib(n):
    if (n = 0)
        return 0
    else if (n = 1)
        return 1
    else
        return Fib(n - 1) + Fib(n - 2)
```

Running time? Let T(n) be the number of additions in Fib(n).

$$T(n) = T(n-1) + T(n-2) + 1$$
 and $T(0) = T(1) = 0$

Question: Given n, compute F(n).

```
Fib(n):
    if (n = 0)
        return 0
    else if (n = 1)
        return 1
    else
        return Fib(n - 1) + Fib(n - 2)
```

Running time? Let T(n) be the number of additions in Fib(n).

$$T(n) = T(n-1) + T(n-2) + 1$$
 and $T(0) = T(1) = 0$

Roughly same as F(n): $T(n) = \Theta(\varphi^n)$.

The number of additions is exponential in n. Can we do better?

An iterative algorithm for Fibonacci numbers

```
Fiblter(n):

if (n = 0) then

return 0

if (n = 1) then

return 1

F[0] = 0

F[1] = 1

for i = 2 to n do

F[i] = F[i-1] + F[i-2]

return F[n]
```

What is the running time of the algorithm? O(n) additions.

An iterative algorithm for Fibonacci numbers

```
Fiblter(n):
    if (n = 0) then
        return 0
    if (n = 1) then
        return 1
    F[0] = 0
    F[1] = 1
    for i = 2 to n do
        F[i] = F[i - 1] + F[i - 2]
    return F[n]
```

What is the running time of the algorithm? O(n) additions.

An iterative algorithm for Fibonacci numbers

```
FibIter(n):
    if (n = 0) then
        return 0
    if (n = 1) then
        return 1
    F[0] = 0
    F[1] = 1
    for i = 2 to n do
        F[i] = F[i - 1] + F[i - 2]
    return F[n]
```

What is the running time of the algorithm? O(n) additions.

What is the difference?

- Recursive algorithm is computing the same numbers again and again.
- Iterative algorithm is storing computed values and building bottom up the final value. Memoization.

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized

Leads to polynomial time algorithm if number of sub-problems is polynomial in input size.

What is the difference?

- Recursive algorithm is computing the same numbers again and again.
- 2 Iterative algorithm is storing computed values and building bottom up the final value. Memoization.

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input size.

What is the difference?

- Recursive algorithm is computing the same numbers again and again.
- Iterative algorithm is storing computed values and building bottom up the final value. Memoization.

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input size.

THE END

...

(for now)