Algorithms & Models of Computation

Introduction to Dynamic
Programming

Lecture 13
Thursday, October 8, 2020

IATEXed: October 13, 2020 09:52

1/67

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

13.1

Recursion and Memoization

2/67

Algorithms & Models of Computation
CS/ECE 374, Fall 2020

13.1.1

Fibonacci Numbers

3/67

Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F(n) = F(n— 1) + F(n — 2) and F(0) = 0, F(1) = 1.

These numbers have many interesting properties. A journal The Fibonacci Quarterly!

4/67

Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F(n) = F(n— 1) + F(n — 2) and F(0) = 0, F(1) = 1.

These numbers have many interesting properties. A journal The Fibonacci Quarterly!

- ' _ ¢"—(1—p)" . 1.618"—(—0.618)" . 1.618"
@ Binet’s formula: F(n) = T R NG NS

 is the golden ratio (1 + +/5)/2 ~ 1.618.
Q limyueoF(n+1)/F(n)=¢

4/67

How many bits?

Consider the nth Fibonacci number F(n). Writing the number F(n) in base 2 requires

@ O(n?) bits.

@ O(n) bits.

@ O(log n) bits.
(

@ ©O(loglog n) bits.

5/67

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n) :
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n — 1) + Fib(n — 2)

6/67

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n) :
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n — 1) + Fib(n — 2)

Running time? Let T(n) be the number of additions in Fib(n).

6/67

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n) :
if (n=0)
return 0
else if (n=1)
return 1

else
return Fib(n — 1) + Fib(n — 2)

Running time? Let T(n) be the number of additions in Fib(n).

T(n)=T(n—1)+T(n—2)+1and T(0)= T(1) =0

6/67

Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F(n).

Fib(n) :
if (n=0)
return 0
else if (n=1)
return 1
else
return Fib(n — 1) + Fib(n — 2)

Running time? Let T(n) be the number of additions in Fib(n).

T(n)=T(n—1)+T(n—2)+1and T(0)= T(1) =0

Roughly same as F(n): T(n) = ©(¢").
The number of additions is exponential in n. Can we do better?

6/67

Recursion tree for the Recursive Fibonacci

© @

7/67

Recursion tree for the Recursive Fibonacci

@@

7/67

Recursion tree for the Recursive Fibonacci

i

7/67

Recursion tree for the Recursive Fibonacci
© © @ €) @
2 @
©O© © 0O 0O
© @

7/67

Recursion tree for the Recursive Fibonacci
@) @

2 @ @)
o 0002
© @

7/67

Recursion tree for the Recursive Fibonacci

7/67

Recursion tree for the Recursive Fibonacci

7/67

An iterative algorithm for Fibonacci numbers

Fiblter(n) :
if (n=0) then
return 0
if (n=1) then
return 1
F[0] =0
Fl1]=1
for i =2 to n do
Fli]= F[i — 1] + F[i — 2]
return F[n]

8/67

An iterative algorithm for Fibonacci numbers

Fiblter(n) :
if (n=0) then
return 0
if (n=1) then
return 1
F[0] =0
Fl1]=1
for i =2 to n do
Fli]= F[i — 1] + F[i — 2]
return F[n]

What is the running time of the algorithm?

8/67

An iterative algorithm for Fibonacci numbers

Fiblter(n) :
if (n=0) then
return 0
if (n=1) then
return 1
F[0] =0
Fl1]=1
for i =2 to n do
Fli]= F[i — 1] + F[i — 2]
return F[n]

What is the running time of the algorithm? O(n) additions.

8/67

What is the difference?

© Recursive algorithm is computing the same numbers again and again.

@ lterative algorithm is storing computed values and building bottom up the final
value.

9/67

What is the difference?

© Recursive algorithm is computing the same numbers again and again.

@ lterative algorithm is storing computed values and building bottom up the final
value. Memoization.

9/67

What is the difference?

© Recursive algorithm is computing the same numbers again and again.
@ lterative algorithm is storing computed values and building bottom up the final
value. Memoization.

Dynamic Programming: J

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input
size.

9/67

THE END

(for now)

