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Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F (n) = F (n − 1) + F (n − 2) and F (0) = 0,F (1) = 1.

These numbers have many interesting properties. A journal The Fibonacci Quarterly!

1 Binet’s formula: F (n) = ϕn−(1−ϕ)n√
5
≈ 1.618n−(−0.618)n√

5
≈ 1.618n

√
5

ϕ is the golden ratio (1 +
√

5)/2 ' 1.618.

2 limn→∞F (n + 1)/F (n) = ϕ
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How many bits?

Consider the nth Fibonacci number F (n). Writing the number F (n) in base 2 requires

(A) Θ(n2) bits.
(B) Θ(n) bits.
(C) Θ(log n) bits.
(D) Θ(log log n) bits.
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Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

6 / 67



Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

6 / 67



Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

6 / 67
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Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

Roughly same as F (n): T (n) = Θ(ϕn).
The number of additions is exponential in n. Can we do better?
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Recursion tree for the Recursive Fibonacci
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An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1
for i = 2 to n do

F [i ] = F [i − 1] + F [i − 2]
return F [n]

What is the running time of the algorithm? O(n) additions.
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What is the difference?

1 Recursive algorithm is computing the same numbers again and again.

2 Iterative algorithm is storing computed values and building bottom up the final
value. Memoization.

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is polynomial in input
size.
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THE END
...

(for now)
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