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Sequences

Definition
Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is number of elements
in the list.

Definition
ai1, . . . , aik is a subsequence of a1, . . . , an if 1 ≤ i1 < i2 < . . . < ik ≤ n.

Definition
A sequence is increasing if a1 < a2 < . . . < an. It is non-decreasing if
a1 ≤ a2 ≤ . . . ≤ an. Similarly decreasing and non-increasing.
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Sequences
Example...

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1, 9

2 Subsequence of above sequence: 5, 2, 1

3 Increasing sequence: 3, 5, 9, 17, 54

4 Decreasing sequence: 34, 21, 7, 5, 1

5 Increasing subsequence of the first sequence: 2, 7, 9.
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Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of maximum length

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3 Longest increasing subsequence: 3, 5, 7, 8
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Näıve Enumeration

Assume a1, a2, . . . , an is contained in an array A
algLISNaive(A[1..n]):

max = 0
for each subsequence B of A do

if B is increasing and |B| > max then
max = |B|

Output max

Running time: O(n2n).
2n subsequences of a sequence of length n and O(n) time to check if a given sequence
is increasing.
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Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):

1 Case 1: Does not contain A[n] in which case
LIS(A[1..n]) = LIS(A[1..(n − 1)])

2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so clear.

Observation
For second case we want to find a subsequence in A[1..(n − 1)] that is restricted to
numbers less than A[n]. This suggests that a more general problem is
LIS smaller(A[1..n], x) which gives the longest increasing subsequence in A where
each number in the sequence is less than x .
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Recursive Approach

LIS smaller(A[1..n], x) : length of longest increasing subsequence in A[1..n] with all
numbers in subsequence less than x

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)
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Example

Sequence: A[1..7] = 6, 3, 5, 2, 7, 8, 1

Har-Peled (UIUC) CS374 39 Fall 2020 39 / 43



THE END
...

(for now)
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