
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

12.3.2
A recursive algorithm for Max Independent
Set in a Graph
FLNAME:12.3.2.0

Har-Peled (UIUC) CS374 22 Fall 2020 22 / 43



A Recursive Algorithm

Let V = {v1, v2, . . . , vn}.
For a vertex u let N(u) be its neighbors.

Observation
v1: vertex in the graph.
One of the following two cases is true

Case 1 v1 is in some maximum independent set.

Case 2 v1 is in no maximum independent set.

We can try both cases to “reduce” the size of the problem

Har-Peled (UIUC) CS374 23 Fall 2020 23 / 43



A Recursive Algorithm

Let V = {v1, v2, . . . , vn}.
For a vertex u let N(u) be its neighbors.

Observation
v1: vertex in the graph.
One of the following two cases is true

Case 1 v1 is in some maximum independent set.

Case 2 v1 is in no maximum independent set.

We can try both cases to “reduce” the size of the problem

Har-Peled (UIUC) CS374 23 Fall 2020 23 / 43



Removing a vertex (say 5)
Because it is NOT in the independent set

1 2 3

4 5 6

7 8
9

1210
11

6

Har-Peled (UIUC) CS374 24 Fall 2020 24 / 43



Removing a vertex (say 5)
Because it is NOT in the independent set

1 2 3

4 5 6

7 8
9

1210
11

6

1 2 3

4 6

7 8
9

1210
11

6

Har-Peled (UIUC) CS374 24 Fall 2020 24 / 43



Removing a vertex (say 5) and its neighbors
Because it is in the independent set

1

4 5

8
9

10
11

2 3

7

12

6

Har-Peled (UIUC) CS374 25 Fall 2020 25 / 43



Removing a vertex (say 5) and its neighbors
Because it is in the independent set

1

4 5

8
9

10
11

2 3

7

12

6

1

4

8
9

10
11

Har-Peled (UIUC) CS374 25 Fall 2020 25 / 43



A Recursive Algorithm: The two possibilities

G1 = G − v1 obtained by removing v1 and incident edges from G
G2 = G − v1 − N(v1) obtained by removing N(v1) ∪ v1 from G

MIS(G ) = max{MIS(G1),MIS(G2) + w(v1)}

Har-Peled (UIUC) CS374 26 Fall 2020 26 / 43



A Recursive Algorithm

RecursiveMIS(G):

if G is empty then Output 0
a = RecursiveMIS(G − v1)
b = w(v1) + RecursiveMIS(G − v1 − N(vn))
Output max(a, b)

Har-Peled (UIUC) CS374 27 Fall 2020 27 / 43



Example

Har-Peled (UIUC) CS374 28 Fall 2020 28 / 43



Recursive Algorithms
..for Maximum Independent Set

Running time:

T (n) = T (n − 1) + T
(
n − 1− deg(v1)

)
+ O(1 + deg(v1))

where deg(v1) is the degree of v1. T (0) = T (1) = 1 is base case.

Worst case is when deg(v1) = 0 when the recurrence becomes

T (n) = 2T (n − 1) + O(1)

Solution to this is T (n) = O(2n).

Har-Peled (UIUC) CS374 29 Fall 2020 29 / 43



Backtrack Search via Recursion

1 Recursive algorithm generates a tree of computation where each node is a smaller
problem (subproblem)

2 Simple recursive algorithm computes/explores the whole tree blindly in some order.
3 Backtrack search is a way to explore the tree intelligently to prune the search space

1 Some subproblems may be so simple that we can stop the recursive algorithm and
solve it directly by some other method

2 Memoization to avoid recomputing same problem
3 Stop the recursion at a subproblem if it is clear that there is no need to explore

further.
4 Leads to a number of heuristics that are widely used in practice although the worst

case running time may still be exponential.

Har-Peled (UIUC) CS374 30 Fall 2020 30 / 43



THE END
...

(for now)

Har-Peled (UIUC) CS374 31 Fall 2020 31 / 43


