Algorithms & Models of Computation

CS/ECE 374, Fall 2020

11.4.2

Quick select

QuickSelect

Divide and Conquer Approach

- Pick a pivot element a from A
- Partition A based on a.

$$m{\mathcal{A}}_{\mathrm{less}} = \{ m{x} \in m{\mathcal{A}} \mid m{x} \leq m{a} \} \; ext{and} \; m{\mathcal{A}}_{\mathrm{greater}} = \{ m{x} \in m{\mathcal{A}} \mid m{x} > m{a} \}$$

- $|A_{less}| = j$: return a
- **1** $|A_{\text{less}}| > j$: recursively find jth smallest element in A_{less}
- ullet $|m{A}_{\mathrm{less}}| < m{j}$: recursively find $m{k}$ th smallest element in $m{A}_{\mathrm{greater}}$ where $m{k} = m{j} |m{A}_{\mathrm{less}}|$.

Example

16	14	34	20	12	5	3	19	11
----	----	----	----	----	---	---	----	----

Time Analysis

- Partitioning step: O(n) time to scan A
- 4 How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say \boldsymbol{A} is sorted in increasing order and $\boldsymbol{j}=\boldsymbol{n}$. Exercise: show that algorithm takes $\Omega(\boldsymbol{n}^2)$ time

Time Analysis

- Partitioning step: O(n) time to scan A
- 4 How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say \boldsymbol{A} is sorted in increasing order and $\boldsymbol{j}=\boldsymbol{n}$. Exercise: show that algorithm takes $\Omega(\boldsymbol{n}^2)$ time

Time Analysis

- Partitioning step: O(n) time to scan A
- 4 How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be A[1].

Say **A** is sorted in increasing order and j = n. Exercise: show that algorithm takes $\Omega(n^2)$ time

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$.

That is pivot is approximately in the middle of \boldsymbol{A}

Then $n/4 \le |A_{\text{less}}| \le 3n/4$ and $n/4 \le |A_{\text{greater}}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$.

That is pivot is approximately in the middle of \boldsymbol{A}

Then $n/4 \le |A_{\text{less}}| \le 3n/4$ and $n/4 \le |A_{\text{greater}}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies
$$T(n) = O(n)!$$

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$.

That is pivot is approximately in the middle of \boldsymbol{A}

Then $n/4 \le |A_{\text{less}}| \le 3n/4$ and $n/4 \le |A_{\text{greater}}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies
$$T(n) = O(n)!$$

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$.

That is pivot is approximately in the middle of \boldsymbol{A}

Then $n/4 \le |A_{\text{less}}| \le 3n/4$ and $n/4 \le |A_{\text{greater}}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies
$$T(n) = O(n)!$$

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$.

That is pivot is approximately in the middle of \boldsymbol{A}

Then $n/4 \le |A_{\text{less}}| \le 3n/4$ and $n/4 \le |A_{\text{greater}}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies
$$T(n) = O(n)!$$

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Suppose pivot is the ℓ th smallest element where $n/4 \le \ell \le 3n/4$.

That is pivot is approximately in the middle of \boldsymbol{A}

Then $n/4 \le |A_{\text{less}}| \le 3n/4$ and $n/4 \le |A_{\text{greater}}| \le 3n/4$. If we apply recursion,

$$T(n) \leq T(3n/4) + O(n)$$

Implies T(n) = O(n)!

How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

THE END

...

(for now)