Algorithms & Models of Computation CS/ECE 374, Fall 2020

11.4

Selecting in Unsorted Lists

Algorithms & Models of Computation CS/ECE 374, Fall 2020

11.4.1

Problem definition and basic algorithm

Rank of element in an array

A: an unsorted array of **n** integers

Definition

For $1 \le j \le n$, element of rank j is the jth smallest element in A.

Problem - Selection

Input Unsorted array \boldsymbol{A} of \boldsymbol{n} integers and integer \boldsymbol{j} Goal Find the \boldsymbol{j} th smallest number in \boldsymbol{A} (rank \boldsymbol{j} number)

Median: $\boldsymbol{j} = \lfloor (\boldsymbol{n} + \boldsymbol{1})/2 \rfloor$

Simplifying assumption for sake of notation: elements of *A* are distinct

Problem - Selection

Input Unsorted array \boldsymbol{A} of \boldsymbol{n} integers and integer \boldsymbol{j} Goal Find the \boldsymbol{j} th smallest number in \boldsymbol{A} (rank \boldsymbol{j} number)

Median: $j = \lfloor (n+1)/2 \rfloor$

Simplifying assumption for sake of notation: elements of **A** are distinct

$\mathsf{Algorithm}\ \mathsf{I}$

- Sort the elements in A
- 2 Pick jth element in sorted order

Time taken = $O(n \log n)$

Do we need to sort? Is there an O(n) time algorithm?

$\mathsf{Algorithm}\ \mathsf{I}$

- Sort the elements in A
- 2 Pick jth element in sorted order

Time taken = $O(n \log n)$

Do we need to sort? Is there an O(n) time algorithm?

Algorithm II

If j is small or n-j is small then

- Find j smallest/largest elements in A in O(jn) time. (How?)
- ② Time to find median is $O(n^2)$.

THE END

...

(for now)