
Algorithms & Models of Computation
CS/ECE 374, Fall 2020

10.9
Solving Recurrences
FLNAME:10.9.0.0

Har-Peled (UIUC) CS374 86 Fall 2020 86 / 102



Solving Recurrences

Two general methods:
1 Recursion tree method: need to do sums

1 elementary methods, geometric series
2 integration

2 Guess and Verify
1 guessing involves intuition, experience and trial & error
2 verification is via induction

Har-Peled (UIUC) CS374 87 Fall 2020 87 / 102



Recurrence: Example I

1 Consider T (n) = 2T (n/2) + n/ log n for n > 2, T (2) = 1.
2 Construct recursion tree, and observe pattern. ith level has 2i nodes, and problem

size at each node is n/2i and hence work at each node is n
2i / log n

2i .
3 Summing over all levels

T (n) =
log n−1∑

i=0

2i
[

(n/2i)

log(n/2i)

]

=

log n−1∑
i=0

n
log n − i

= n
log n∑
j=1

1
j
= nHlog n = Θ(n log log n)

Har-Peled (UIUC) CS374 88 Fall 2020 88 / 102



Recurrence: Example I

1 Consider T (n) = 2T (n/2) + n/ log n for n > 2, T (2) = 1.
2 Construct recursion tree, and observe pattern. ith level has 2i nodes, and problem

size at each node is n/2i and hence work at each node is n
2i / log n

2i .
3 Summing over all levels

T (n) =
log n−1∑

i=0

2i
[

(n/2i)

log(n/2i)

]

=

log n−1∑
i=0

n
log n − i

= n
log n∑
j=1

1
j
= nHlog n = Θ(n log log n)

Har-Peled (UIUC) CS374 88 Fall 2020 88 / 102



Recurrence: Example II

1 Consider T (n) = T (
√

n) + 1 for n > 2, T (2) = 1.

2 What is the depth of recursion?
√

n,
√√

n,
√√√

n, . . . ,O(1).
3 Number of levels: n2−L

= 2 means L = log log n.
4 Number of children at each level is 1, work at each node is 1
5 Thus, T (n) =

∑L
i=0 1 = Θ(L) = Θ(log log n).

Har-Peled (UIUC) CS374 89 Fall 2020 89 / 102



Recurrence: Example II

1 Consider T (n) = T (
√

n) + 1 for n > 2, T (2) = 1.

2 What is the depth of recursion?
√

n,
√√

n,
√√√

n, . . . ,O(1).
3 Number of levels: n2−L

= 2 means L = log log n.
4 Number of children at each level is 1, work at each node is 1
5 Thus, T (n) =

∑L
i=0 1 = Θ(L) = Θ(log log n).

Har-Peled (UIUC) CS374 89 Fall 2020 89 / 102



Recurrence: Example III

1 Consider T (n) =
√

nT (
√

n) + n for n > 2, T (2) = 1.
2 Using recursion trees: number of levels L = log log n
3 Work at each level? Root is n, next level is

√
n ×
√

n = n. Can check that each
level is n.

4 Thus, T (n) = Θ(n log log n)

Har-Peled (UIUC) CS374 90 Fall 2020 90 / 102



Recurrence: Example III

1 Consider T (n) =
√

nT (
√

n) + n for n > 2, T (2) = 1.
2 Using recursion trees: number of levels L = log log n
3 Work at each level? Root is n, next level is

√
n ×
√

n = n. Can check that each
level is n.

4 Thus, T (n) = Θ(n log log n)

Har-Peled (UIUC) CS374 90 Fall 2020 90 / 102



Recurrence: Example IV

1 Consider T (n) = T (n/4) + T (3n/4) + n for n > 4. T (n) = 1 for 1 ≤ n ≤ 4.
2 Using recursion tree, we observe the tree has leaves at different levels (a lop-sided

tree).
3 Total work in any level is at most n. Total work in any level without leaves is

exactly n.
4 Highest leaf is at level log4 n and lowest leaf is at level log4/3 n
5 Thus, n log4 n ≤ T (n) ≤ n log4/3 n, which means T (n) = Θ(n log n)

Har-Peled (UIUC) CS374 91 Fall 2020 91 / 102



Recurrence: Example IV

1 Consider T (n) = T (n/4) + T (3n/4) + n for n > 4. T (n) = 1 for 1 ≤ n ≤ 4.
2 Using recursion tree, we observe the tree has leaves at different levels (a lop-sided

tree).
3 Total work in any level is at most n. Total work in any level without leaves is

exactly n.
4 Highest leaf is at level log4 n and lowest leaf is at level log4/3 n
5 Thus, n log4 n ≤ T (n) ≤ n log4/3 n, which means T (n) = Θ(n log n)

Har-Peled (UIUC) CS374 91 Fall 2020 91 / 102



THE END
...

(for now)

Har-Peled (UIUC) CS374 92 Fall 2020 92 / 102


