Algorithms & Models of Computation
CS/ECE 374, Fall 2020

10.9

Solving Recurrences

Har-Peled (UIUC) Fall 2020 86/102

Solving Recurrences

Two general methods:
© Recursion tree method: need to do sums
@ elementary methods, geometric series
@ integration
© Guess and Verify

@ guessing involves intuition, experience and trial & error
@ verification is via induction

Har-Peled (UIUC) Fall 2020 87 /102

Recurrence: Example |

© Consider T(n) =2T(n/2)+ n/logn forn > 2, T(2) = 1.

Har-Peled (UIUC) CS374 88 Fall 2020 88 /102

Recurrence: Example |

© Consider T(n) =2T(n/2)+ n/logn forn > 2, T(2) = 1.

@ Construct recursion tree, and observe pattern. ith level has 2/ nodes, and problem
size at each node is n/2' and hence work at each node is 5/ log 3.

© Summing over all levels

oS 2 o2

— log(n/2)
log n—1 n
P logn — i
logn
= "Z — = nHz,, = ©(nloglog n)
— J
j=1

Har-Peled (UIUC) CS374 88 Fall 2020 88 /102

Recurrence: Example |l

@ Consider T(n) = T(y/n) +1forn>2, T(2) =1.

Har-Peled (UIUC) CS374 89 Fall 2020 89 /102

Recurrence: Example |l

@ Consider T(n) = T(y/n) +1forn>2, T(2) =1.
@ What is the depth of recursion? /n,\/+/n,\/\/+/n,...,0(1).

© Number of levels: n?™" = 2 means L = log log n.
@ Number of children at each level is 1, work at each node is 1
@ Thus, T(n) = 31,1 = O(L) = O(log log n).

Har-Peled (UIUC) CS374 89 Fall 2020 89 /102

Recurrence: Example Il

@ Consider T(n) = /nT(y/n) + nforn>2 T(2)=1

Har-Peled (UIUC) CS374 90 Fall 2020 90 /102

Recurrence: Example Il

@ Consider T(n) = /nT(y/n)+nforn>2 T(2)=1.
@ Using recursion trees: number of levels L = log log n

© Work at each level? Root is n, next level is v/n X 1/n = n. Can check that each
level is n.

© Thus, T(n) = ©(nloglog n)

Har-Peled (UIUC) CS374 90 Fall 2020 90 /102

Recurrence: Example IV

@ Consider T(n) = T(n/4)+ T(3n/4) +nforn >4 T(n)=1forl < n <4

Har-Peled (UIUC) CS374 91 Fall 2020 91 /102

Recurrence: Example IV

@ Consider T(n) = T(n/4)+ T(3n/4) +nforn >4 T(n)=1forl < n <4
@ Using recursion tree, we observe the tree has leaves at different levels (a lop-sided
tree).

© Total work in any level is at most n. Total work in any level without leaves is
exactly n.

© Highest leaf is at level log, n and lowest leaf is at level log, 3 n

© Thus, nlogy n < T(n) < nlog, 3 n, which means T(n) = ©(nlog n)

Har-Peled (UIUC) CS374 91 Fall 2020 91/102

THE END

(for now)

